
THE PERFORMANCE OF
THE DIFFERENT ALGORITHMS

ON CLOUD COMPUTING
ENVIRONMENT

Dr. Trapty Agarwal

THE PERFORMANCE OF THE DIFFERENT

ALGORITHMS ON CLOUD COMPUTING

ENVIRONMENT






Dr. Trapty Agarwal

First Published 2023

This book contains information obtained from highly regarded resources.

Copyright for individual contents remains with the authors.

A wide variety of references are listed. Reasonable efforts have been made

to publish reliable data and information, but the author and the publisher

cannot assume responsibility for the validity of

all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted,

or utilized in any form by any electronic, mechanical, or other means,

now known or hereinafter invented, including photocopying,

microfilming and recording, or any information storage or retrieval system,

without permission from the publishers.

For permission to photocopy or use material electronically

from this work please access alexispress.us

© RESERVED

ALEXIS PRESS

Published by: Alexis Press, LLC, Jersey City, USA

www.alexispress.us

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication Data

Includes bibliographical references and index.

ISBN 979-8-89161-764-3

The Performance of the Different Algorithms on Cloud Computing Environment by Dr. Trapty Agarwal

CONTENTS

Chapter 1. An Elaboration of the Load Balancing Algorithms in Cloud Computing Environment 1

— Dr. Trapty Agarwal

Chapter 2. Round Robin Load Balancing in Cloud Computing with its Strategies

and Emerging Trends .. 10

— Dr. Trapty Agarwal

Chapter 3. A Comprehensive Review of Least Connections Algorithms in Cloud

Computing with its Efficiency and Scalability .. 18

— Dr. Trapty Agarwal

Chapter 4. A Comprehensive Review of Advancements and Challenges in Weighted Round Robin

Scheduling for Efficient Resource Allocation in Cloud Computing Environments 26

— Dr. Trapty Agarwal

Chapter 5. An In-Depth Analysis of First Come First Serve (FCFS) Scheduling Algorithms

in Cloud Computing with its Unraveling Principles ... 35

— Dr. Trapty Agarwal

Chapter 6. Analyzing of the Shortest Job Next (SJN) Scheduling Algorithm

in Cloud Computing .. 44

— Dr. Trapty Agarwal

Chapter 7. An Elaboration of the Advancements and Challenges in Priority Scheduling

Algorithms for Efficient Task Management in Cloud Computing 53

— Dr. Trapty Agarwal

Chapter 8. An Analysis of Task Migration Algorithms in Cloud Computing

and its Future Directions .. 62

— Dr. Trapty Agarwal

Chapter 9. Exploring the Frontiers of Ant Colony Optimization in Cloud Computing 72

— Dr. Trapty Agarwal

Chapter 10. A Comprehensive Analysis of Genetic Algorithms in cloud computing

and Problem Solving ... 81

— Girija Shankar Sahoo

Chapter 11. Advancements in Fault Tolerance Algorithms and analysis of Strategies

and Future Directions .. 90

— Pooja Dubey

Chapter 12. Advancements in Threshold-Based Provisioning Scheduling Strategies

for Enhanced Performance in Cloud Computing Environments 98

— Swati Singh

1

The Performance of the Different Algorithms on Cloud Computing Environment

 CHAPTER 1

AN ELABORATION OF THE LOAD BALANCING ALGORITHMS IN

CLOUD COMPUTING ENVIRONMENT
Dr. Trapty Agarwal, Associate Professor,

Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar

Pradesh, India.

Email Id- trapty@muit.in

ABSTRACT:

The fast expansion of cloud computing has made it imperative to devise and execute effective

load balancing algorithms in order to maximize resource allocation, improve system

efficiency, and guarantee elevated availability in dispersed settings. The load balancing

methods used in cloud computing systems are thoroughly explored and elaborated upon in

this work. The paper explores the unique benefits these algorithms provide to cloud-based

systems, such as resource usage optimization, scalability, fault tolerance, and enhanced user

experience. It begins with an overview of the importance of load balancing. Several popular

loads balancing algorithms, including weighted methods, random load balancing, and round-

robin, are thoroughly examined, with an emphasis on their advantages and situations in which

they work best.

The conversation also includes how load balancing helps with resource cost optimization,

workload adaptation, and maintenance and update ease. The study also discusses the global

component of load balancing in multi-region or multi-data center cloud infrastructures using

Global Server Load Balancing (GSLB). This work aims to provide a useful resource for

researchers, practitioners, and cloud service providers who want to understand, implement,

and optimize load balancing strategies for increased reliability and efficiency in cloud

computing environments by clarifying the nuances of these algorithms.

KEYWORDS:

Cloud Computing, Load Balancing, Resource Allocation, Scalability, System Efficiency,

Workload Distribution

INTRODUCTION

Efficient workload distribution across several servers is critical for maximum performance,

resource usage, and scalability in the continually changing cloud computing ecosystem. A

rising number of enterprises are moving their services and apps to cloud environments, which

highlights the need of efficient load balancing systems. Sophisticated algorithms that can

allocate resources optimally, adjust to dynamic changes in system loads, and intelligently

distribute incoming requests are necessary for this complex orchestration of computing

operations.

The area of load balancing in cloud computing is complex and includes a range of methods

and approaches intended to address the difficulties presented by heterogeneous cloud

infrastructures, varying workloads, and demand fluctuations. This in-depth investigation

explores load balancing algorithms and looks at their workings, principles, and suitability for

use in the complex web of cloud computing settings. This paper intends to explore the

complexities of cloud load balancing, from conventional methods to state-of-the-art machine

learning-driven strategies, illuminating the critical role these algorithms play in attaining

performance efficiency and scalability in contemporary computing infrastructures[1].

2

The Performance of the Different Algorithms on Cloud Computing Environment

 History of Load Balancing Algorithms in Cloud Computing Environment:

The development of computing paradigms and the constant need for effective resource use

have shaped the interesting history of load balancing algorithms in the context of cloud

computing. The purpose of classical distributed computing, where the idea of load balancing

originated, was to divide computational jobs equally across many servers in order to avoid

bottlenecks and maximize system performance. Because cloud settings are dynamic and

fluid, load balancing became even more important when cloud computing emerged as the

dominant paradigm. The groundwork was established by early load balancing algorithms like

Round Robin and Least Connections, which offered fundamental methods for allocating

incoming requests across servers. Although these approaches worked well in certain cases,

they had trouble keeping up with the changing demands of cloud applications and different

resource capabilities. To overcome these difficulties, more complex algorithms include

Weighted Round Robin, Least Response Time, and Least Loaded developed throughout

time[2].

The landscape of load balancing became much more complex with the introduction of

virtualization and containerization. To manage the complications brought forth by virtualized

and containerized settings, new algorithms were created, including ones that made use of

machine learning and predictive analytics. These sophisticated algorithms could anticipate

future demands, adjust dynamically to changing circumstances, and allocate resources

optimally. Load balancing techniques changed to support hybrid and multi-cloud systems as

cloud computing continued to advance. This required resolving issues with load distribution

across geographically separated data centers, data consistency, and inter-cloud connectivity.

Load balancing has been essential to the performance of microservices architectures and

cloud-native applications in recent years. In order to offer adaptive and intelligent load

distribution and to ensure optimum performance, scalability, and resource usage in today's

complex and dynamic cloud computing settings, modern algorithms make use of real-time

data analytics, artificial intelligence, and automation. The development of load balancing

algorithms throughout time has been driven by a constant search for efficiency and flexibility

to satisfy the changing needs of cloud computing systems[3].

Perform Load Balancing Algorithms in Cloud Computing Environment:

In a cloud computing context, load balancing is the process of putting algorithms and

techniques into place to effectively divide incoming workloads across many servers or

resources. The basic procedures for load balancing in a cloud computing environment are

mentioned in Figure 1 and discussed below:

a) Understand Workload Characteristics:

Examine the makeup of your workloads, taking into account variables like traffic patterns,

resource needs, and computational intensity. A thorough understanding of your applications'

features aids in the selection of suitable load balancing algorithms.

b) Select Load Balancing Algorithm:

Select a load balancing algorithm according to your unique needs. Round Robin, Least

Connections, Weighted Round Robin, Least Response Time, and more sophisticated

algorithms using machine learning or predictive analytics are examples of common

algorithms.

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Illustrated the Perform Load Balancing Algorithms in Cloud Computing

c) Evaluate Cloud Service Provider Load Balancing Services:

Load balancing features are included by several cloud service providers. Examine the built

load balancing features offered by the

Load Balancing, Azure Load Balancer, and AWS Elastic Load Balancing. These services

often have smooth integrations with other cloud services

d) Configure Load Balancer Settings:

Set the load balancing settings based on the requirements of your application. This might

include creating routing rules, modifying timeouts, and putting up health checks to keep an

eye on the condition of backend services.

e) Implement Dynamic Scaling:

Use auto-scaling capabilities to dynamically change the amount of resources or instances

according to the demand that is occurring at any given time. This guarantees the system's

ability to efficiently manage variable workloads b

The Performance of the Different Algorithms on Cloud Computing Environment

Perform Load Balancing Algorithms in Cloud Computing

Environment.

Evaluate Cloud Service Provider Load Balancing Services:

Load balancing features are included by several cloud service providers. Examine the built

load balancing features offered by the cloud platform of your choice, such as Google Cloud

Load Balancing, Azure Load Balancer, and AWS Elastic Load Balancing. These services

often have smooth integrations with other cloud services[4].

re Load Balancer Settings:

Set the load balancing settings based on the requirements of your application. This might

include creating routing rules, modifying timeouts, and putting up health checks to keep an

eye on the condition of backend services.

Implement Dynamic Scaling:

scaling capabilities to dynamically change the amount of resources or instances

according to the demand that is occurring at any given time. This guarantees the system's

ability to efficiently manage variable workloads by scaling it up or down.

3

The Performance of the Different Algorithms on Cloud Computing Environment

Perform Load Balancing Algorithms in Cloud Computing

Load balancing features are included by several cloud service providers. Examine the built-in

cloud platform of your choice, such as Google Cloud

Load Balancing, Azure Load Balancer, and AWS Elastic Load Balancing. These services

Set the load balancing settings based on the requirements of your application. This might

include creating routing rules, modifying timeouts, and putting up health checks to keep an

scaling capabilities to dynamically change the amount of resources or instances

according to the demand that is occurring at any given time. This guarantees the system's

4

The Performance of the Different Algorithms on Cloud Computing Environment

 f) Utilize Application Delivery Controllers (ADC):

Use load balancing appliances or Application Delivery Controllers, which provide further

capabilities like SSL termination, content caching, and security measures. These may

improve your apps' overall security and speed.

g) Implement Content Delivery Networks (CDN):

In order to reduce latency and offload traffic from the origin servers, incorporate material

Delivery Networks, if appropriate, to cache and deliver static material closer to end users.

h) Monitor and Analyze Performance:

Use monitoring tools to evaluate your system's functioning on a regular basis. Monitor data

including resource use, server health, and response times. Future load balancing

modifications may be influenced by this data.

i) Optimize and Fine-Tune:

Review and adjust your load balancing configuration often in response to evolving system

performance, traffic patterns, and application needs. Optimization might include scaling

thresholds, changing algorithm parameters, or adding additional algorithms as necessary.

j) Ensure High Availability:

Put failover and redundancy measures in place to guarantee high availability. Workloads

should be divided across many availability zones or regions to lessen the effect of any future

interruptions.

k) Document and Test:

Keep a record of your load balancing setup and verify its performance on a regular basis,

particularly during peak demands or when the application design is modified. This guarantees

a strong load balancing technique and aids in the identification of any problems.

Algorithm of the Load Balance in Cloud Computing:

In distributed systems, load balancing is essential to guaranteeing that resources are used

effectively and that no one server is overloaded with traffic. The choice among load

balancing methods is contingent upon the particular needs and attributes of the system. Here

is a basic Python round-robin load balancing algorithm example:

class LoadBalancer:

 def __init__(self, servers):

 self.servers = servers

 self.current_server_index = 0

 def get_next_server(self):

 # Round-robin algorithm: Distribute requests in a circular order

 next_server = self.servers[self.current_server_index]

 # Move to the next server in the list

 self.current_server_index = (self.current_server_index + 1) % len(self.servers)

5

The Performance of the Different Algorithms on Cloud Computing Environment

 return next_server

Example usage

servers = ["Server1", "Server2", "Server3"]

load_balancer = LoadBalancer(servers)

Simulate 10 requests

for i in range(10):

 next_server = load_balancer.get_next_server()

 print(f"Request {i+1} sent to {next_server}")

Advantages of the Load Balance in Cloud Computing:

Algorithms for load balancing are essential for maximizing cloud computing systems'

performance and resource use. In a cloud computing environment, load balancing techniques

provide the following benefits which is mention in Figure 2:

a) Resource Utilization Optimization:

Load balancing makes ensuring that resources are allocated effectively across many servers

or instances. This promotes better resource use and cost-effectiveness by preventing any one

server from being overloaded with traffic while others go unused.

b) Scalability:

Because workloads fluctuate, cloud infrastructures often need to scale dynamically. In order

to adjust to fluctuating needs, load balancing enables the smooth addition or removal of

servers, guaranteeing that the system can extend horizontally to accommodate more traffic

[5], [6].

c) Enhanced Performance and Responsiveness:

Load balancing algorithms distribute incoming requests across servers in an equitable

manner, preventing bottlenecks and speeding up response times. When end users use cloud-

hosted apps or services, performance and responsiveness are enhanced.

d) Fault Tolerance and High Availability:

Load balancing helps provide fault tolerance by diverting traffic from servers that could be

malfunctioning or having problems. In the event of a server loss, this helps maintain high

availability and guarantees that users encounter the fewest possible disturbances.

e) Optimized Resource Costs:

A common pricing model used by cloud providers is resource use. Because load balancing

prevents over-provisioning of servers, makes optimal use of resources, and enables dynamic

scaling depending on demand, it helps enterprises optimize their resource expenditures.

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 2: Illustrated the advantages of the Load Balance in Cloud Computing.

f) Adaptability to Variable Workloads:

In cloud systems, workloads may vary greatly. Algorithms for load balancing dynamically

distribute incoming requests, according to traffic variations. Be

resources are distributed where they are most required, efficiently managing a range of

workloads.

g) Improved User Experience:

The distribution of incoming requests is adjusted by load balancing, improving the user

experience overall. Because there is a lower chance of delayed response times or unavailable

services, users are more satisfied and confident with cloud

h) Ease of Maintenance and Updates:

Load balancing allows servers to be upgraded or taken down one at a time wi

compromising the service's overall availability, it makes maintenance and upgrades more

smooth. This guarantees that upgrades may be implemented without interfering with users'

ability to access services.

The Performance of the Different Algorithms on Cloud Computing Environment

Illustrated the advantages of the Load Balance in Cloud Computing.

Adaptability to Variable Workloads:

In cloud systems, workloads may vary greatly. Algorithms for load balancing dynamically

distribute incoming requests, according to traffic variations. Because of its flexibility,

resources are distributed where they are most required, efficiently managing a range of

Improved User Experience:

The distribution of incoming requests is adjusted by load balancing, improving the user

l. Because there is a lower chance of delayed response times or unavailable

services, users are more satisfied and confident with cloud-based apps.

Ease of Maintenance and Updates:

oad balancing allows servers to be upgraded or taken down one at a time wi

compromising the service's overall availability, it makes maintenance and upgrades more

smooth. This guarantees that upgrades may be implemented without interfering with users'

6

The Performance of the Different Algorithms on Cloud Computing Environment

Illustrated the advantages of the Load Balance in Cloud Computing.

In cloud systems, workloads may vary greatly. Algorithms for load balancing dynamically

cause of its flexibility,

resources are distributed where they are most required, efficiently managing a range of

The distribution of incoming requests is adjusted by load balancing, improving the user

l. Because there is a lower chance of delayed response times or unavailable

oad balancing allows servers to be upgraded or taken down one at a time without

compromising the service's overall availability, it makes maintenance and upgrades more

smooth. This guarantees that upgrades may be implemented without interfering with users'

7

The Performance of the Different Algorithms on Cloud Computing Environment

 i) Dynamic Traffic Management:

Algorithms for load balancing may take into account a number of variables, including

capacity, demand levels, and server health. Incoming requests are intelligently routed with

the aid of this dynamic traffic management, guaranteeing peak performance and

dependability.

j) Global Server Load Balancing (GSLB):

GSLB expands load balancing to a global level in a cloud setting with several regions or data

centers. By guiding users to the nearest or most accessible data center, it speeds up response

times and maximizes the utilization of dispersed resources worldwide.

DISCUSSION

The introduction and broad use of cloud computing have completely changed how computer

resources are allocated and accessible. Assuring efficiency, performance, and reliability in

cloud systems requires optimizing resource allocation in a dynamic and dispersed landscape.

In order to accomplish these goals, load balancing algorithms which act as the coordinators of

resource distribution are essential. In the context of cloud computing systems, this study

offers a thorough and in-depth investigation of load balancing techniques[7]. It is impossible

to overestimate the importance of load balancing in cloud computing. In an environment

where several networked servers and instances support a range of workloads, it is crucial to

distribute incoming requests fairly in order to avoid any one server from acting as a

bottleneck.

In addition to improving resource usage, effective load balancing supports scalability, which

is essential for cloud infrastructures. Load balancing algorithms dynamically distribute

resources in response to workload fluctuations, allowing cloud infrastructures to grow

horizontally by smoothly adding or deleting servers in response to demand. This flexibility

prevents the system from over- or under-provisioning resources by ensuring that it can

manage varying workloads[8].

The capacity of load balancing algorithms to enhance system responsiveness and

performance is one of its main benefits. Slow response times are avoided, a smooth user

experience is ensured, and the danger of overloading certain nodes is reduced via load

balancing, which divides incoming requests equally across servers. Furthermore, load

balancing improves high availability and fault tolerance by diverting traffic from servers that

are malfunctioning or having problems. As a consequence, even in the case of hardware

failures or other unanticipated circumstances, the system design becomes more durable and

reduces downtime and service interruptions. In-depth analyses of many load balancing

techniques often used in cloud systems are covered in this work. There includes a thorough

discussion of traditional techniques like random load balancing, which chooses a server at

random from the pool, and round-robin, which cyclically distributes requests to each server in

turn. We also investigate weighted load balancing techniques, in which servers are given

varying weights according on their capability[9]. These algorithms accommodate various use

cases and system specifications, giving cloud architects the freedom to choose the best plan

of action for their unique objectives. In addition to improving speed and maximizing resource

use, load balancing techniques also help make cloud computing more affordable. Load

balancing makes ensuring that resources are distributed effectively and avoids costly over-

provisioning, which is a common practice among cloud service providers. Furthermore, load

balancing makes maintenance and upgrades easier by enabling servers to be upgraded or

taken down separately without impacting the service's overall availability. This functionality

8

The Performance of the Different Algorithms on Cloud Computing Environment

 is essential for reducing downtime during system updates or patches and guaranteeing

uninterrupted service delivery. Global Server Load Balancing, or GSLB, becomes important

to take into account in a worldwide cloud architecture that has many data centers or locations.

With GSLB, load balancing is extended globally, connecting users to the closest or most

accessible data center. This improves end-user response times while also making the most

efficient use of scattered resources worldwide. To sum up, this study provides an extensive

overview of the complex realm of load balancing techniques in cloud computing settings.

Through discussing the importance, benefits, and subtle differences between different load

balancing techniques, the paper hopes to provide insightful information to scholars,

professionals, and cloud service providers. In order to fully use cloud computing, load

balancing techniques must be understood, put into practice, and optimized[10], [11].

Efficiency, scalability, and dependability are critical for satisfying the needs of contemporary

computing environments.

CONCLUSION

The explanation of load balancing algorithms inside cloud computing settings highlights their

critical function in determining the effectiveness, expandability, and dependability of

contemporary distributed systems. Complex resource allocation procedures are required due

to the dynamic nature of cloud infrastructures, which are defined by a variety of workloads,

fluctuating resource needs, and the requirement for continuous availability.

The key component is the implementation of load balancing algorithms, which distribute

incoming requests in an orderly manner to maximize resource use and guarantee smooth

service delivery.We have examined the importance of load balancing in avoiding resource

bottlenecks and enhancing system performance throughout this thorough investigation. These

algorithms' capacity to react to changing workloads guarantees that cloud infrastructures may

grow horizontally, dynamically changing the number of servers in response to demand. By

avoiding overprovisioning and allocating resources effectively, this improves scalability

while simultaneously boosting cost-effectiveness.

The benefits of load balancing algorithms include fault tolerance and high availability in

addition to resource efficiency. These algorithms help to a robust system design that reduces

downtime and guarantees continuous service delivery by rerouting traffic away from servers

that are having problems. Additionally, by averting interruptions and slow response times,

load balancing techniques are essential in improving the user experience overall.A

comprehensive analysis of the advantages and disadvantages of many load balancing

methods, such as round-robin, random load balancing, and weighted techniques, is provided.

These algorithms provide cloud architects with flexibility by letting them customize their

selection according to certain use cases and system specifications. Furthermore, the discourse

around Global Server Load Balancing (GSLB) underscores the worldwide ramifications of

load balancing. Specifically, load balancing improves response times and maximizes resource

usage worldwide by routing users to the closest or most accessible data center.The knowledge

gathered from this investigation is a useful tool for cloud service providers, researchers, and

practitioners as cloud computing develops further. In order to develop and manage cloud

infrastructures that satisfy the needs of contemporary computing landscapes, one must have a

thorough understanding of the nuances of load balancing algorithms. The foundation of cloud

computing is the interaction of efficiency, scalability, and dependability, made possible by

load balancing. This guarantees efficient resource utilization and smooth service delivery to

customers worldwide. Hence, load balancing algorithms' ongoing development and

implementation greatly enhance the functionality and efficiency of cloud computing systems.

9

The Performance of the Different Algorithms on Cloud Computing Environment

 REFERENCES:

[1] E. Jafarnejad Ghomi, A. Masoud Rahmani, and N. Nasih Qader, “Load-balancing

algorithms in cloud computing: A survey,” Journal of Network and Computer

Applications. 2017. doi: 10.1016/j.jnca.2017.04.007.

[2] M. Alam and Z. Ahmad Khan, “Issues and Challenges of Load Balancing Algorithm in

Cloud Computing Environment,” Indian J. Sci. Technol., 2017, doi:

10.17485/ijst/2017/v10i25/105688.

[3] M. Gamal, R. Rizk, H. Mahdi, and B. E. Elnaghi, “Osmotic Bio-Inspired Load

Balancing Algorithm in Cloud Computing,” IEEE Access, 2019, doi:

10.1109/ACCESS.2019.2907615.

[4] R. Rajeshkannan and M. Aramudhan, “Comparative study of load balancing

algorithms in cloud computing environment,” Indian J. Sci. Technol., 2016, doi:

10.17485/ijst/2016/v9i20/85866.

[5] S. Mayur and N. Chaudhary, “Enhanced weighted round robin load balancing

algorithm in cloud computing,” Int. J. Innov. Technol. Explor. Eng., 2019, doi:

10.35940/ijitee.I1030.0789S219.

[6] Soumya Ray, “Execution Analysis of Load Balancing Algorithms in Cloud Computing

Environment,” Int. J. Cloud Comput. Serv. Archit., 2012, doi:

10.5121/ijccsa.2012.2501.

[7] P. Arora and A. Dixit, “An optimized Load Balancing Algorithm in Cloud

Computing,” Int. J. Eng. Adv. Technol., 2020, doi: 10.35940/ijeat.e9242.069520.

[8] R. Yadav and M. Namdev, “A Study on Particle Swarm based Load Balancing

Algorithms in Cloud Computing,” IJOSTHE, 2018, doi: 10.24113/ojssports.v5i1.99.

[9] S. F. Issawi, A. Al Halees, and M. Radi, “An Efficient Adaptive Load Balancing

Algorithm for Cloud Computing Under Bursty Workloads,” Eng. Technol. Appl. Sci.

Res., 2015, doi: 10.48084/etasr.554.

[10] A. Kumar, S. Pandey, and V. Prakash, “A Survey: Load Balancing Algorithm in Cloud

Computing,” SSRN Electron. J., 2019, doi: 10.2139/ssrn.3368778.

[11] A. Ullah, N. M. Nawi, J. Uddin, S. Baseer, and A. H. Rashed, “Artificial bee colony

algorithm used for load balancing in cloud computing: Review,” IAES International

Journal of Artificial Intelligence. 2019. doi: 10.11591/ijai.v8.i2.pp156-167.

10

The Performance of the Different Algorithms on Cloud Computing Environment

 CHAPTER 2

ROUND ROBIN LOAD BALANCING IN CLOUD COMPUTING WITH

ITS STRATEGIES AND EMERGING TRENDS
Dr. Trapty Agarwal, Associate Professor,

Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar

Pradesh, India.

Email Id- trapty@muit.in

ABSTRACT:

In-depth analysis of the Round Robin Load Balancing algorithm in the context of cloud

computing is provided in this article, along with insights into its tactics, performance

indicators, and new developments. In distributed systems, load balancing is essential for fair

resource distribution and efficient use in dynamic cloud settings. The Round Robin

algorithm, which is renowned for its simplicity and equity, cycles through incoming requests

distributing them across servers. This paper looks at multiple approaches to Round Robin

Load Balancing, including tweaks and adjustments to make it more efficient in certain

situations. Moreover, a comprehensive examination of performance measures offers a

detailed comprehension of the ways in which Round Robin influences system responsiveness,

scalability, and resource efficiency. In addition, the study identifies new advances and trends

in Round Robin Load Balancing, providing insight into current events that support the

technology's ongoing applicability in modern cloud computing environments. For scholars,

practitioners, and cloud architects interested in learning more about Round Robin Load

Balancing and its changing role in cloud infrastructure optimization, this article is a great

resource.

KEYWORDS:

Algorithm, Cloud Computing, Load Balancing, Performance Indicators, Round Robin,

Strategies.

INTRODUCTION

The way computer resources are delivered, managed, and accessed has been completely

transformed by cloud computing, which has emerged as a disruptive paradigm. Load

balancing algorithms are essential for maximizing the performance of distributed systems in

this dynamic environment where scalability, resource efficiency, and responsiveness are

critical. across these algorithms, the Round Robin Load Balancing algorithm is notable for

being a basic and extensively used method for dividing up incoming requests across many

servers in an equitable manner. In the context of cloud computing, the Round Robin

algorithm is thoroughly examined in this study, with an emphasis on its tactics, performance

indicators, and new developments. Renowned for its simplicity and equity, Round Robin

distributes incoming requests to each server in turn on a cyclical basis, guaranteeing an equal

division of labor. The Round Robin algorithm's techniques have undergone modifications and

enhancements to improve its suitability for a range of circumstances as the cloud ecosystem

develops[1]. For cloud architects and system administrators looking to customize load

balancing techniques to particular use cases, workloads, or infrastructure configurations,

understanding these tactics is essential.

This article explores the fundamental ideas behind the Round Robin algorithm and offers a

comprehensive examination of the related performance indicators. Analyzing how Round

Robin Load Balancing affects resource use, scalability, and system responsiveness provides

important information on how well it works in different scenarios. The research attempts to

11

The Performance of the Different Algorithms on Cloud Computing Environment

 contribute to a more sophisticated understanding of the algorithm's consequences on the

overall performance of cloud computing systems by clarifying these measurements.

Additionally, the investigation includes identifying new developments and trends in round

robin load balancing. In a time of fast technological advancement, keeping up with the latest

load balancing algorithm advances is essential to remaining current with best practices and

guaranteeing effective use of cloud resources. Emerging trends reveal how Round Robin

Load Balancing is adjusting to address the difficulties provided by changing workloads,

technical improvements, and the quest of increased system efficiency as cloud architectures

continue to grow and vary. This review provides a thorough overview of cloud computing's

use of round robin load balancing. This exploration aims to provide a valuable resource for

researchers, practitioners, and cloud architects seeking a deeper understanding of Round

Robin Load Balancing and its evolving role in optimizing the complex landscape of cloud

computing environments[2], [3]. It will do this by breaking down its strategies, evaluating

performance metrics, and identifying emerging trends.

History of the Round Robin Load Balancing in Cloud Computing:

The Round Robin Load's past Cloud computing's use of balancing illustrates its continued

importance as a foundational method in distributed systems. The technique originated from

the idea of "round robin" in sports scheduling, when teams alternate games against each

other. It was then applied to computer science to solve the problems associated with fair

resource allocation in server clusters. As a straightforward and equitable load balancing

technique, round robin was presented in the early days of computers. It made sure that every

server had an equal chance to process requests by distributing incoming requests to servers in

a circular sequence on a regular basis. This strategy was intended to avoid resource

bottlenecks and improve overall system performance in settings where servers were of

comparable capacity. Round Robin Load Balancing gained popularity as cloud computing

gained traction since it was a straightforward and simple solution. Round Robin's simple

method of allocating incoming requests across a pool of servers was advantageous for cloud

designs, which are defined by dynamic workloads and scalable infrastructures. Because of its

intrinsic fairness, the method was especially attractive in settings where the expectation was

that each server would contribute equally to the processing burden.

The techniques used in Round Robin Load Balancing have developed over time to handle

particular issues in cloud computing settings. To improve the algorithm's adaptability to

various workloads, server capacities, and system configurations, variations and improvements

were developed. Scholars and experts investigated methods to enhance Round Robin's

performance in constantly shifting cloud environments and satisfy the requirements of

various applications. The history of Round Robin Load Balancing has seen an examination of

new trends and a concentration on performance indicators in recent years. Scholars have

conducted in-depth analyses of how Round Robin affects system responsiveness, scalability,

and resource use, offering a more complex view of its consequences[4]. To guarantee the

algorithm's continuous relevance and efficacy in changing cloud computing situations, its

adaptation to upcoming trends, such as edge computing, serverless architectures, and hybrid

cloud environments, is being researched. Finally, the history of round robin load balancing in

cloud computing demonstrates the algorithm's ongoing significance as a cornerstone. The

technique, which found its use in computers after first emerging in sports scheduling, has

been essential to guaranteeing equitable and effective allocation of resources. The tactics and

new developments in Round Robin Load Balancing demonstrate how flexible this technique

is to the dynamic environment of distributed systems, which makes it a vital component of

cloud infrastructure optimization as cloud computing develops further.

The Performance of the Different Algorithms on Cloud Computing Environment

Methods of Performing the Round Robin Load Balancing in Cloud Computing

A common method in cloud computing for distributing incoming network traffic or service

requests equally across a group

no one server is overloaded, this method avoids bottlenecks and maximizes resource use. The

following Figure 1; is a quick explanation of how round robin load balancing works in cloud

computing:

Figure 1: Illustrated the methods of performing the Round Robin Load Balancing in

a) Server Pool Setup:

Create a pool of servers that can handle the incoming requests first. To ensure consistency,

these servers need to run the same program

b) Load Balancer Configuration:

Install a load balancer in the cloud setting. By serving as a go

server pool, the load balancer divides incoming requests in a round

c) Health Monitoring:

Put in place health monitoring systems to systematically assess each pool server's condition.

Traffic may be diverted to servers in good condition by the load balancer in the event that a

server malfunctions or goes down.

The Performance of the Different Algorithms on Cloud Computing Environment

the Round Robin Load Balancing in Cloud Computing

A common method in cloud computing for distributing incoming network traffic or service

requests equally across a group of servers is round robin load balancing. By making sure that

no one server is overloaded, this method avoids bottlenecks and maximizes resource use. The

is a quick explanation of how round robin load balancing works in cloud

Figure 1: Illustrated the methods of performing the Round Robin Load Balancing in

Cloud Computing.

Create a pool of servers that can handle the incoming requests first. To ensure consistency,

these servers need to run the same program or service.

Load Balancer Configuration:

Install a load balancer in the cloud setting. By serving as a go-between for clients and the

server pool, the load balancer divides incoming requests in a round-robin manner.

monitoring systems to systematically assess each pool server's condition.

Traffic may be diverted to servers in good condition by the load balancer in the event that a

server malfunctions or goes down.

12

The Performance of the Different Algorithms on Cloud Computing Environment

 the Round Robin Load Balancing in Cloud Computing:

A common method in cloud computing for distributing incoming network traffic or service

of servers is round robin load balancing. By making sure that

no one server is overloaded, this method avoids bottlenecks and maximizes resource use. The

is a quick explanation of how round robin load balancing works in cloud

Figure 1: Illustrated the methods of performing the Round Robin Load Balancing in

Create a pool of servers that can handle the incoming requests first. To ensure consistency,

between for clients and the

robin manner.

monitoring systems to systematically assess each pool server's condition.

Traffic may be diverted to servers in good condition by the load balancer in the event that a

13

The Performance of the Different Algorithms on Cloud Computing Environment

 d) Round Robin Algorithm

Round Robin Load Balancing's algorithm is its fundamental component. The load balancer

distributes incoming requests to the pool's available servers in a sequential manner as they

come in. After reaching the last server, this loops back to the original one in a circular

fashion.

e) Session Persistence (Optional):

Take into consideration establishing session persistence based on the needs of the application.

In the event that session state has to be maintained, this guarantees that successive requests

from the same client are sent to the same server.

f) Scalability:

Horizontal scalability is supported by round robin load balancing. It is easy to add more

servers to the pool, and the load balancer automatically modifies the allocation of incoming

requests to include the extra servers.

g) Configuration Tuning:

Adjust the load balancer settings to better suit the particular requirements of the application.

To maximize performance, change settings like request limits, intervals between health

checks, and connection timeouts.

h) Monitoring and Analytics:

Use monitoring tools to keep tabs on server performance, identify bottlenecks, and examine

traffic trends. Making educated judgments regarding infrastructure optimization and

scalability is possible with the usage of this data.

By implementing Round Robin Load Balancing in a cloud computing environment, these

methods help enterprises effectively divide incoming traffic across numerous servers,

enhancing overall system performance, stability, and scalability[5].

Algorithm of Round Robin Load Balancing in Cloud Computing:

In cloud computing, Round Robin Load Balancing is a popular and straightforward technique

that divides workload or incoming network traffic across many servers or resources.

Round Robin's primary goal is to equitably distribute requests in a circular sequence among

the servers that are available.Round Robin Load Balancing Algorithm:

Algorithm: Round Robin Load Balancing

1. Initialize:

 Create a list of servers (S1, S2, ..., Sn).

 Set a pointer variable (p) to the first server (S1).

2. Repeat for each incoming request:

 a. Assign the request to the server indicated by the current pointer (p).

 b. Process the request on the selected server.

 c. Update statistics, such as response time or server load.

14

The Performance of the Different Algorithms on Cloud Computing Environment

 3. Check Server Availability:

 a. If the selected server (p) is available:

 Process the request on the server.

 Update the pointer to the next server in a circular manner.

 b. If the server is busy or unavailable:

 Move the pointer to the next server and repeat step 3a.

 Continue this process until an available server is found.

4. Update Pointer:

 Move the pointer (p) to the next server in a circular manner.

 If the pointer reaches the last server, wrap around to the first server.

5. Repeat:

 Continue the process for each incoming request.

Advantages of the Round Robin Load Balancing in Cloud Computing:

Due to its efficiency, fairness, and simplicity, the Round Robin Load Balancing algorithm has

benefits in cloud computing.

Round Robin provides equitable resource use by dividing incoming requests across servers in

a cyclical pattern. It is simple to install and operate in dynamic cloud systems due to its low

computational overhead and clear architecture. Round Robin may be used to distribute

stateless requests, like web traffic, without the requirement for session persistence because of

its predictable and stateless nature.

Its flexibility in responding to variations in server availability further makes it a flexible

option, especially in contexts with a high degree of server homogeneity. In cloud computing

installations, round robin load balancing is appreciated for its ability to strike a compromise

between ease of use and efficient job allocation[6].

a) Fair Resource Utilization:

Round Robin ensures equitable resource use by dividing up incoming requests or tasks across

available servers in an even-handed manner. Every server has an equal chance to process

requests, avoiding overwork on one server at the expense of underutilization on others.

b) Simplicity and Ease of Implementation:

It is easy to comprehend and use the method. Elaborate tracking techniques or complicated

algorithms are not necessary. Its simplicity facilitates deployment and management in cloud

settings that are dynamic.

c) Low Overhead:

Round Robin requires very little in the way of memory and processing power. The technique

is effective for usage in cloud computing systems as it just requires simple pointer

manipulation and does not need the maintenance of intricate data structures[7].

The Performance of the Different Algorithms on Cloud Computing Environment

d) Predictable Behavior:

A steady and predictable distribution of requests is ensured by the pointer's predictable

circular movement. Better planning and resource management may be possible in situations

where a uniform distribution of resources is required, thanks to this predictability.

Figure 2: Illustrated the advantages of the Round Robin Load Balancing

e) Suitability for Homogeneous Environments:

Round Robin works best in settings when server processing power is comparable. The

technique makes sure that every server in a homogenous arrangement contributes the same

amount to managing the incoming demand, whi

f) Load Balancing without Session Persistence:

Round Robin load balancing does not involve recording the status of individual connections

or sessions since it is stateless. This makes it especially helpful for distributing

don't need session information to be maintained, such web requests.

g) Adaptability to Dynamic Environments:

The algorithm can adjust to a change in the quantity of resources or servers. Round Robin

may readily adapt to server additions or dele

servers without requiring extensive modification

appropriate for every load balancing situation, its benefits have made it a well

several cloud computing settings, particularly where resource allocation fairness and

simplicity are important factors.

The Performance of the Different Algorithms on Cloud Computing Environment

Predictable Behavior:

A steady and predictable distribution of requests is ensured by the pointer's predictable

circular movement. Better planning and resource management may be possible in situations

where a uniform distribution of resources is required, thanks to this predictability.

Figure 2: Illustrated the advantages of the Round Robin Load Balancing

Suitability for Homogeneous Environments:

Round Robin works best in settings when server processing power is comparable. The

technique makes sure that every server in a homogenous arrangement contributes the same

amount to managing the incoming demand, which encourages balanced resource use.

Load Balancing without Session Persistence:

Round Robin load balancing does not involve recording the status of individual connections

or sessions since it is stateless. This makes it especially helpful for distributing

don't need session information to be maintained, such web requests.

Adaptability to Dynamic Environments:

The algorithm can adjust to a change in the quantity of resources or servers. Round Robin

may readily adapt to server additions or deletions by simply updating the list of accessible

servers without requiring extensive modification[8].Although Round Robin may not be

appropriate for every load balancing situation, its benefits have made it a well

several cloud computing settings, particularly where resource allocation fairness and

ant factors.

15

The Performance of the Different Algorithms on Cloud Computing Environment

A steady and predictable distribution of requests is ensured by the pointer's predictable

circular movement. Better planning and resource management may be possible in situations

where a uniform distribution of resources is required, thanks to this predictability.

Figure 2: Illustrated the advantages of the Round Robin Load Balancing.

Round Robin works best in settings when server processing power is comparable. The

technique makes sure that every server in a homogenous arrangement contributes the same

ch encourages balanced resource use.

Round Robin load balancing does not involve recording the status of individual connections

or sessions since it is stateless. This makes it especially helpful for distributing requests that

The algorithm can adjust to a change in the quantity of resources or servers. Round Robin

tions by simply updating the list of accessible

.Although Round Robin may not be

appropriate for every load balancing situation, its benefits have made it a well-liked option in

several cloud computing settings, particularly where resource allocation fairness and

16

The Performance of the Different Algorithms on Cloud Computing Environment

 DISCUSSION

In cloud computing systems, round robin load balancing is essential for improving

performance and maximizing resource use. In order to maintain a balanced workload, this

dynamic approach divides incoming network traffic or service requests equally across a

number of servers. Round Robin's simplicity stems from its cyclical operation, which routes

requests to each server in turn and sequentially. This is one of its main benefits[9]. This

method encourages scalability and fault tolerance by preventing any one server from acting

as a bottleneck. However, different tactics used to adjust to certain cloud computing

circumstances might affect how successful Round Robin is. By allocating varying weights to

servers according to their processing capacity, weighted Round Robin, for example, enables

more capable servers to manage a correspondingly higher percentage of the load.

Furthermore, to guarantee effective resource allocation, dynamic Round Robin modifies

server weights dynamically in response to their performance in real time. The use of machine

learning techniques to forecast server loads and instantly adjust distribution tactics is one of

the emerging trends in round robin load balancing. This is expected to improve load

balancing systems' flexibility and responsiveness in more intricate and dynamic cloud

computing settings. For best performance, scalability, and reliability, it is becoming more

important for enterprises to comprehend and apply Round Robin Load Balancing solutions as

they continue to depend on cloud infrastructure for their computing demands[10].

CONCLUSION

Finally, Round Robin Load Balancing is an essential component of cloud computing that

provides a simple but efficient method of allocating workloads across servers. Round Robin's

strategiesweighted allocation and dynamic changes, for exampleshowcase its adaptability to

changing server capabilities and real-time performance requirements. The inclusion of

machine learning techniques in Round Robin Load Balancing, along with other new

technologies, indicate an interesting path for the evolving cloud computing environment. By

adding intelligence, load balancing systems become more effective and flexible, opening up a

potential new way to handle the growing complexity of cloud settings. A thorough grasp of

Round Robin Load Balancing and its changing patterns is crucial for enterprises aiming for

cloud infrastructures with the best possible resource efficiency, scalability, and fault

tolerance. The future of load balancing within the dynamic cloud computing ecosystem is

expected to be significantly shaped by the ongoing investigation and incorporation of novel

approaches.

REFERENCES:

[1] S. Mayur and N. Chaudhary, “Enhanced weighted round robin load balancing

algorithm in cloud computing,” Int. J. Innov. Technol. Explor. Eng., 2019, doi:

10.35940/ijitee.I1030.0789S219.

[2] S. Mohapatra, S. Mohanty, and K. S. Rekha, “Analysis of Different Variants in Round

Robin Algorithms for Load Balancing in Cloud Computing,” Int. J. Comput. Appl.,

2013, doi: 10.5120/12103-8221.

[3] N. Manikandan and A. Pravin, “An efficient improved weighted Round Robin load

balancing algorithm in cloud computing,” Int. J. Eng. Technol., 2018, doi:

10.14419/ijet.v7i3.1.16810.

[4] B. Alankar, G. Sharma, H. Kaur, R. Valverde, and V. Chang, “Experimental setup for

investigating the efficient load balancing algorithms on virtual cloud,” Sensors

(Switzerland), 2020, doi: 10.3390/s20247342.

17

The Performance of the Different Algorithms on Cloud Computing Environment

 [5] N. Pasha, A. Agarwal, and R. Rastogi, “Round Robin Approach for VM Load

Balancing Algorithm in Cloud Computing Environment,” Int. J. Adv. Res. Comput.

Sci. Softw. Eng., 2014.

[6] M. M. Abed and M. F. Younis, “Developing load balancing for IoT - Cloud computing

based on advanced firefly and weighted round robin algorithms,” Baghdad Sci. J.,

2019, doi: 10.21123/bsj.2019.16.1.0130.

[7] P. Somwang, “Efficient load balancing for cloud computing by using content

analysis,” Int. J. Commun. Networks Inf. Secur., 2020, doi:

10.17762/ijcnis.v12i2.4557.

[8] D. Chitra Devi and V. Rhymend Uthariaraj, “Load Balancing in Cloud Computing

Environment Using Improved Weighted Round Robin Algorithm for Nonpreemptive

Dependent Tasks,” Sci. World J., 2016, doi: 10.1155/2016/3896065.

[9] E. P. Cynthia, I. Iskandar, and A. A. Sipayung, “Rancang Bangun Server HAproxy

Load Balancing Master to Master MySQL (Replication) Berbasis Cloud Computing,”

Algoritm. J. ILMU Komput. DAN Inform., 2020, doi: 10.30829/algoritma.v4i1.7275.

[10] I. Hidayah, R. Munadi, and I. D. Irawati, “Implementasi High-Availability Web Server

Menggunakan Load Balancing As a Service Pada Openstack Cloud,” e-Proceeding

Eng., 2019.

18

The Performance of the Different Algorithms on Cloud Computing Environment

 CHAPTER 3

A COMPREHENSIVE REVIEW OF LEAST CONNECTIONS

ALGORITHMS IN CLOUD COMPUTING WITH ITS

EFFICIENCY AND SCALABILITY
Dr. Trapty Agarwal, Associate Professor,

Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar

Pradesh, India.

Email Id- trapty@muit.in

ABSTRACT:

The present IT infrastructure is being completely transformed by cloud computing, making

scalable and effective load balancing systems essential. This in-depth analysis explores the

complex field of Least Connections Algorithms (LCAs) in the context of cloud computing,

illuminating its critical function in maximizing resource efficiency and guaranteeing flawless

service delivery. The first section of the article gives a thorough introduction to cloud

computing and discusses the difficulties in load balancing in systems that are dynamic and

diverse. After that, it moves into a thorough analysis of many Least Connections Algorithms,

explaining their guiding concepts, practical concerns, and working processes. The study

presents a comprehensive knowledge of the advantages and disadvantages of various LCAs

by synthesizing ideas from several research papers, surveys, and real-world deployments. The

investigation focuses on efficiency and scalability, critically assessing the role that Least

Connections Algorithms play in improving these important performance indicators. The

study investigates how they affect cloud-based application response times, resource use, and

bottleneck mitigation. Furthermore, scalability factors are discussed, highlighting how

flexible LCAs may be to manage different workloads and take into account the dynamic

nature of cloud systems. Additionally, the paper offers a practical viewpoint on the

performance of Least Connections Algorithms in real-world contexts by discussing case

studies and actual implementations. The consequences for various cloud deployment models

public, private, and hybrid clouds, for example are also looked at, offering a more nuanced

perspective of how well LCAs work in various cloud topologies.

KEYWORDS:

Cloud Computing, Efficiency, Load Balancing, Resource Efficiency, Scalability.

INTRODUCTION

The introduction of cloud computing, the dynamic environment of modern computing has

completely changed how businesses administer and provide IT services. Because cloud

computing provides unmatched scalability, flexibility, and resource efficiency, companies

can quickly adjust to changing market conditions. Load balancing algorithms are responsible

for distributing workloads across available resources in an efficient manner, which is one of

the major obstacles to fully using cloud systems. Out of all these algorithms, Least

Connections Algorithms (LCAs) have become a popular and effective method for handling

the complex problem of workload allocation in cloud computing settings. This thorough

analysis explores the uses, complexities, and effects of Least Connections Algorithms on the

effectiveness and scalability of cloud-based systems[1]. Strong load balancing systems are

becoming more and more necessary as businesses move more and more of their services and

apps to the cloud. Since they prioritize sending traffic to servers that have the fewest active

connections, LCAs are a viable option for maximizing resource usage and guaranteeing a fair

workload allocation. This review's main objective is to provide readers a comprehensive

19

The Performance of the Different Algorithms on Cloud Computing Environment

 grasp of the fundamental ideas, practical issues, and working processes of least connections

algorithms. Through the synthesis of findings from a wide variety of studies, surveys, and

real-world applications, this article seeks to provide a thorough and current overview of the

status of lifecycle assessments (LCAs) in relation to cloud computing[2].

Scalability and efficiency are two major issues that permeate this investigation. Algorithms

for load balancing must be able to distribute workloads effectively in cloud settings, where

there is a constant increase in both volume and diversity. In order to improve the overall

efficiency of cloud-based systems, it is important to consider how LCAs can reduce response

times, optimize resource consumption, and guarantee a fair distribution of computing

resources. These aspects are all rigorously evaluated in this paper. Furthermore, because of

the dynamic nature of the demand for computational resources in cloud computing,

scalability issues are critical. This analysis explores the scalability features of LCAs,

assessing how well they can adjust to different workloads and grow with the changing

requirements of cloud environments. This study is a useful tool for academics, practitioners,

and decision-makers who want to learn more about and use the potential of Least

Connections Algorithms in the field of cloud computing because of its careful examination of

efficiency and scalability[3]. The next sections take us on a tour of the fundamental ideas

behind LCAs, looking at their practical uses, performance consequences, and the changing

cloud computing scene, where these algorithms will be crucial in determining the direction of

IT infrastructure in the future.

Methods of performing least connections algorithms in cloud computing:

In cloud computing, the load balancing method known as Least Connections is used to split

up incoming network traffic across many servers or resources as mention in Figure 1 below.

The objective is to maximize the use of available resources while making sure that no server

is overloaded with connections. The following are some ways to use the Least Connections

algorithm in a cloud computing setting:

a) Round Robin with Connection Counting:

Put into practice a round-robin load-balancing system and keep track of how many

connections are active on each server. Point fresh connections toward the server with the

fewest open connections.

b) Dynamic Server Weight Adjustment:

Give each server a weight according to its capacity and effectiveness and higher weights are

assigned to servers with larger capacities. Adapt the weights dynamically according to the

quantity of connections that each server is currently managing and open new connections

directly to the server that has the most weight.

c) Real-Time Monitoring:

Keep an eye on the number of connections on each server in real time and make use of cloud-

based monitoring services or a central monitoring system. Point fresh connections toward the

server with the fewest open connections[4].

d) Server Health Checks:

Conduct health checks on servers to ascertain their performance and capacity at the moment

and remove from the rotation any servers that are unhealthy or have excessive resource use.

Send new connections to the server that has the fewest current connections and is in the best

health.

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Represents the methods of performing least connections

e) Connection Queue Length:

Keep an eye on each server's connection queue length and open new connections by sending

them to the server with the shortest connection line. This strategy guarantees effective

resource usage and helps to avoid delays caused by lines.

f) Weighted Least Connections:

Based on their capacity, give servers weights and divide the current number of connections

by the weight of the server to get a weighted score. Open new connections directly to the

lowest-scoring server in terms of weight

g) Least Response Time

Calculate each server's response time to a repre

connections to the server that responds the fastest. Periodically modify the algorithm in light

of evolving response times.

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Represents the methods of performing least connections algorithms in cloud

computing.

Connection Queue Length:

Keep an eye on each server's connection queue length and open new connections by sending

them to the server with the shortest connection line. This strategy guarantees effective

lps to avoid delays caused by lines.

Weighted Least Connections:

Based on their capacity, give servers weights and divide the current number of connections

by the weight of the server to get a weighted score. Open new connections directly to the

ring server in terms of weight[5].

Least Response Time:

Calculate each server's response time to a representative request and send incoming

connections to the server that responds the fastest. Periodically modify the algorithm in light

20

The Performance of the Different Algorithms on Cloud Computing Environment

algorithms in cloud

Keep an eye on each server's connection queue length and open new connections by sending

them to the server with the shortest connection line. This strategy guarantees effective

Based on their capacity, give servers weights and divide the current number of connections

by the weight of the server to get a weighted score. Open new connections directly to the

sentative request and send incoming

connections to the server that responds the fastest. Periodically modify the algorithm in light

21

The Performance of the Different Algorithms on Cloud Computing Environment

 h) Machine Learning-Based Predictive Algorithms:

Predict server load using machine learning models by using past data and develop models to

predict each server's future connection demands. Open new connections with the server that

is expected to be least busy in the future.

i) Session Persistence with Least Connections:

Use session persistence to maintain the affinity between clients and servers and assign any

incoming connections for each session to the server that has the fewest open connections for

that particular session[6].

j) Adaptive Load Balancing:

Put into practice load balancing algorithms that adjust to changing circumstances. To

dynamically modify weights, priority, or routing choices, use feedback methods.

Scalability, server health, and the dynamic nature of cloud resources are all important

considerations when using Least Connections algorithms in a cloud setting. Effective load

balancing also depends on the algorithm's regular adjustment and optimization in response to

shifting traffic patterns and server circumstances.

Algorithms of the Least connection in cloud computing:

A load balancing technique called "Least Connections" is used to split up incoming network

traffic across many servers. The goal is to route fresh requests to the server that currently has

the fewest open connections. In addition to ensuring that the server with the fewest current

connections receives new requests, this aids in dispersing the load equally across the servers.

This is a basic load balancing algorithm for the "Least Connections" method:

A. Initialization:

a) Keep track of all the servers you use, along with the connection statistics for each.

b) Set each server's connection counts to zero upon startup.

B. Request Handling:

a) Find the server with the fewest active connections by iterating over the list of

servers whenever a new request comes in.

b) If there are many servers with the same minimum number of connections, choose

one using other factors (such as random, round-robin, etc.).

c) For the chosen server, increase the connection counter[7].

C. Connection Release:

a) Decrease the connection counter for the associated server whenever a connection is

closed or relinquished.

The "Least Connections" algorithm's pseudocode may like this:

initialize_servers()

 for each server in server_list

 server.connection_count = 0

22

The Performance of the Different Algorithms on Cloud Computing Environment

 handle_request()

 min_connections = infinity

 selected_server = null

 for each server in server_list

 if server.connection_count < min_connections

 min_connections = server.connection_count

 selected_server = server

 // Additional criteria for tie-breaking (if needed)

 selected_server.connection_count += 1

 // Redirect the request to the selected_server

 // ...

release_connection(selected_server)

 selected_server.connection_count -= 1

Advantages of the Least Connections Algorithms in Cloud Computing:

In cloud computing settings, the Least Connections Algorithm is a load balancing method

used to split up incoming network traffic across many servers or resources. Optimizing

resource use, improving performance, and guaranteeing high availability are the main goals.

The following are some major benefits which mention in the Figure 2; of using Least

Connections Algorithms in cloud computing:

a) Dynamic Load Distribution:

Incoming traffic is dynamically distributed to the server with the fewest active connections

via least connections algorithms. By distributing the load equally across the available

resources, this prevents any one server from being overloaded and ultimately improves

system performance as a whole.

b) Optimized Resource Utilization:

The technique aids in effectively using the resources at hand by routing traffic to the server

with the fewest active connections. This avoids scenarios in which certain servers are

overworked and others are underused, improving resource efficiency and economy[8].

c) Improved Scalability:

Cloud infrastructures that are both scalable and dynamic are ideal for the Least Connections

Algorithm. The system automatically adjusts to changes in resource demand by sending

traffic to the servers with the fewest connections, allowing for seamless scaling without the

need for human intervention.

d) Enhanced Fault Tolerance:

Traffic is redirected to other servers via the Least Connections Algorithm in the case of a

server breakdown or outage. This boosts fault tolerance and assures continuous service

availability, leading to a more robust and resilient cloud architecture.

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 2: Illustrated the advantages of the Least Connections Algorithms.

e) Reduced Response Time:

The technique reduces response time by allocating incoming requests to the connections with

the fewest number of active connections. Because the system effectively handles and

balances the load, users have quicker access to services, which enhances user satisfaction in

general.

f) Adaptability to Varying Workloads:

Workloads in cloud systems might change depending on the time of day, the season, or

unforeseen demand surges. By constantly modifying the traffic allocation, the Least

Connections Algorithm adjusts to these

during times of high demand.

g) Simple Implementation:

The Least Connections Algorithm is a popular option for cloud service providers since it is

very simple to implement. The algorithm's simplicity makes it

into current cloud infrastructures without adding needless complexity

Through the distribution of network traffic according to the fewes

Least Connections Algorithm is an essential component of cloud comput

optimization.

Dynamic load distribution, resource optimization, greater fault tolerance, scalability,

decreased response times, flexibility to

procedure are some of its benefits. The effectiveness, dependability, and performance of

cloud-based services are enhanced by these advantages.

In cloud computing systems, least connections algorithms are essential for maximizing

resource allocation and improving productivity. When it comes to distributed systems, load

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 2: Illustrated the advantages of the Least Connections Algorithms.

Reduced Response Time:

ces response time by allocating incoming requests to the connections with

the fewest number of active connections. Because the system effectively handles and

balances the load, users have quicker access to services, which enhances user satisfaction in

Adaptability to Varying Workloads:

Workloads in cloud systems might change depending on the time of day, the season, or

unforeseen demand surges. By constantly modifying the traffic allocation, the Least

Connections Algorithm adjusts to these variations and maintains optimum performance even

Simple Implementation:

The Least Connections Algorithm is a popular option for cloud service providers since it is

very simple to implement. The algorithm's simplicity makes it straightforward to integrate

into current cloud infrastructures without adding needless complexity[9].

Through the distribution of network traffic according to the fewest active connections, the

Least Connections Algorithm is an essential component of cloud comput

Dynamic load distribution, resource optimization, greater fault tolerance, scalability,

decreased response times, flexibility to changing workloads, and an easy deployment

procedure are some of its benefits. The effectiveness, dependability, and performance of

based services are enhanced by these advantages.

DISCUSSION

In cloud computing systems, least connections algorithms are essential for maximizing

resource allocation and improving productivity. When it comes to distributed systems, load

23

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 2: Illustrated the advantages of the Least Connections Algorithms.

ces response time by allocating incoming requests to the connections with

the fewest number of active connections. Because the system effectively handles and

balances the load, users have quicker access to services, which enhances user satisfaction in

Workloads in cloud systems might change depending on the time of day, the season, or

unforeseen demand surges. By constantly modifying the traffic allocation, the Least

variations and maintains optimum performance even

The Least Connections Algorithm is a popular option for cloud service providers since it is

straightforward to integrate

t active connections, the

Least Connections Algorithm is an essential component of cloud computing environments'

Dynamic load distribution, resource optimization, greater fault tolerance, scalability,

changing workloads, and an easy deployment

procedure are some of its benefits. The effectiveness, dependability, and performance of

In cloud computing systems, least connections algorithms are essential for maximizing

resource allocation and improving productivity. When it comes to distributed systems, load

24

The Performance of the Different Algorithms on Cloud Computing Environment

 balancing is essential for ensuring that jobs are allocated fairly across available servers since

several client-server interactions take place at the same time. As a load balancing technique,

the Least Connections Algorithm works by sending incoming requests to the server that has

the fewest active connections at any given moment. By distributing the load equally across

the servers, this technique seeks to avoid any one server being overloaded while others are

left underused. The Least Connections Algorithm's effectiveness stems from its capacity to

adjust dynamically to fluctuating workloads. This allows it to favor servers with fewer

connections, which reduces response times and boosts system performance in general.

Scalability is one of the main benefits of Least Connections Algorithms. Scalable solutions

are becoming more and more necessary as cloud computing environments develop and

grow[10]. The distribution of connections is kept balanced even when the system's load

varies since the algorithm grows easily along with the number of resources and customers.

This scalability is especially helpful in cloud situations where flexibility and elasticity are

essential characteristics. Easily adapting to changing workloads and adding new servers to

the infrastructure or provisioning virtual machines, the Least Connections Algorithm

maintains its efficiency in load distribution. Additionally, the Least Connections Algorithm

helps cloud computing become more reliable and fault-tolerant. In the case of server outages

or unavailability, the algorithm automatically redistributes incoming requests by continually

preferring servers with the fewest active connections. Because of its resilience, the system is

guaranteed to be able to tolerate unforeseen disturbances without sacrificing the user

experience. The algorithm is a useful tool for managing dynamic cloud systems with varying

workloads because of its flexibility to circumstances where servers are brought online or

offline. It's important to recognize that the Least Connections Algorithm could not be a one-

size-fits-all solution, despite its benefits. The algorithm's performance may sometimes be

impacted by variables including server capacity, geographic dispersion, and application

features. Furthermore, in order to properly handle a variety of needs, real-world cloud

infrastructures may need to use a mix of load balancing solutions. However, the Least

Connections Algorithm stands out for its effectiveness, scalability, and capacity to encourage

a balanced distribution of connections in cloud computing systems as part of a holistic load

balancing strategy[11]. The Least Connections Algorithm and other load balancing

algorithms are crucial for attaining maximum performance and resource usage in distributed

systems, even as the cloud technology environment continues to change.

CONCLUSION

The Least Connections Algorithm is shown to be an important part of the complex world of

cloud computing, with significant scalability and efficiency advantages. In order to minimize

the danger of server overloads and optimize resource usage, this load balancing approach

works wonders in distributing workloads evenly across servers, avoiding bottlenecks. Its

effectiveness comes from its ability to adjust dynamically to shifting workloads, reliably

sending requests to the servers with the fewest open connections and cutting down on

response times. One notable characteristic of the Least Connections Algorithm is its

scalability, which fits in well with cloud systems that are dynamic and change resource

capacity in response to demand. This flexibility plays a major role in the overall elasticity and

flexibility of cloud infrastructures. In addition, the Least Connections Algorithm is essential

for improving cloud computing dependability and fault tolerance. The algorithm naturally

distributes the load in a manner that encourages resilience by giving preference to servers that

have less connections. The method guarantees a smooth redistribution of connections in the

event of server failures or unavailability, preserving service continuity and user experience.

Because there is always a chance of unplanned interruptions in cloud systems, this fault-

tolerant quality is very important. Even though the Least Connections Algorithm has many

25

The Performance of the Different Algorithms on Cloud Computing Environment

 benefits, it's crucial to understand that there isn't a single load balancing technique that works

for all situations. The effectiveness of the method in certain situations may vary depending on

variations in server capacity, geographic dispersion, and application features. Therefore, in

order to efficiently handle a variety of needs, a sophisticated approach to load balancing that

incorporates several methodologies may be required. In the ever-changing realm of cloud

computing, the Least Connections Algorithm continues to be a fundamental tool for

achieving maximum efficiency and effective use of resources. Its capacity to smoothly

expand with the addition of resources, dynamically balance workloads, and aid in fault

tolerance makes it an invaluable weapon in the toolbox of cloud computing tactics. Future

cloud infrastructures will surely be shaped by the continuous improvement and integration of

these algorithms, which will make sure that they continue to be reliable, effective, and able to

satisfy the constantly evolving needs of contemporary computing.

REFERENCES:

[1] B. Alankar, G. Sharma, H. Kaur, R. Valverde, and V. Chang, “Experimental setup for

investigating the efficient load balancing algorithms on virtual cloud,” Sensors

(Switzerland), 2020, doi: 10.3390/s20247342.

[2] Januar Al Amien and Doni Winarso, “ANALISIS PENINGKATAN KINERJA FTP

SERVER MENGGUNAKAN LOAD BALANCING PADA CONTAINER,” J.

FASILKOM, 2019, doi: 10.37859/jf.v9i3.1667.

[3] E. P. Cynthia, I. Iskandar, and A. A. Sipayung, “Rancang Bangun Server HAproxy

Load Balancing Master to Master MySQL (Replication) Berbasis Cloud Computing,”

Algoritm. J. ILMU Komput. DAN Inform., 2020, doi: 10.30829/algoritma.v4i1.7275.

[4] A. Al-Rahayfeh, S. Atiewi, A. Abuhussein, and M. Almiani, “Novel approach to task

scheduling and load balancing using the dominant sequence clustering and mean shift

clustering algorithms,” Futur. Internet, 2019, doi: 10.3390/fi11050109.

[5] S. Saeid and T. Ali Yahiya, “Load Balancing Evaluation Tools for a Private Cloud: A

Comparative Study,” ARO-The Sci. J. Koya Univ., 2018, doi: 10.14500/aro.10438.

[6] F. Liu, B. Luo, and Y. Niu, “Cost-Effective Service Provisioning for Hybrid Cloud

Applications,” Mob. Networks Appl., 2017, doi: 10.1007/s11036-016-0738-0.

[7] S. Yang, P. Wieder, R. Yahyapour, S. Trajanovski, and X. Fu, “Reliable Virtual

Machine Placement and Routing in Clouds,” IEEE Trans. Parallel Distrib. Syst., 2017,

doi: 10.1109/TPDS.2017.2693273.

[8] B. Yan et al., “Tidal-traffic-aware routing and spectrum allocation in elastic optical

networks,” J. Opt. Commun. Netw., 2018, doi: 10.1364/JOCN.10.000832.

[9] L. Zhou, X. Cui, and S. Wu, “An optimized load-balancing scheduling method based

on the WLC algorithm for cloud data centers,” J. Comput. Inf. Syst., 2013, doi:

10.12733/jcis6513.

[10] H. He, Y. Feng, Z. Li, Z. Zhu, W. Zhang, and A. Cheng, “Dynamic load balancing

technology for cloud-oriented CDN,” Comput. Sci. Inf. Syst., 2015, doi:

10.2298/CSIS141104025H.

[11] T. A. Gani et al., “Galera Documentation,” IMPLEMENTASI DAN Anal. KINERJA

MySQL Clust. MENGGUANAKAN Metod. LOAD Balanc., 2017.

26

The Performance of the Different Algorithms on Cloud Computing Environment

 CHAPTER 4

A COMPREHENSIVE REVIEW OF ADVANCEMENTS

AND CHALLENGES IN WEIGHTED ROUND ROBIN

SCHEDULING FOR EFFICIENT RESOURCE ALLOCATION

IN CLOUD COMPUTING ENVIRONMENTS
Dr. Trapty Agarwal, Associate Professor,

Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar

Pradesh, India.

Email Id- trapty@muit.in

ABSTRACT:

The most recent developments and difficulties in applying Weighted Round Robin (WRR)

scheduling to cloud computing systems in order to optimize resource allocation. In cloud

platforms, improving overall system performance, scalability, and responsiveness requires

effective resource management. The study methodically looks at the fundamentals of WRR

scheduling, emphasizing how it may prioritize and distribute resources according to

predetermined weights to accommodate a variety of workloads and boost system

performance as a whole. This paper explores recent advances in WRR scheduling algorithms,

taking into account how well they adapt to changing cloud infrastructures and dynamic

workloads. It also discusses the difficulties and constraints that come with using WRR in

actual cloud environments, such as scalability problems, fairness issues, and the effects of

different application needs. In order to improve predicted resource allocation tactics, the

article also explores the integration of WRR scheduling with cutting-edge technologies like

artificial intelligence and machine learning. It highlights the advantages and disadvantages of

WRR-based scheduling algorithms by comparing their performance to that of other methods.

KEYWORDS:

Cloud Computing, Load Balancing, Resource Allocation, Scheduling Algorithms, Weighted

Round Robin, Workload Management.

INTRODUCTION

Cloud computing has revolutionized the landscape of modern computing by providing on-

demand access to a shared pool of configurable computing resources over the internet. As

organizations increasingly migrate their workloads to the cloud, the need for efficient

resource allocation mechanisms becomes paramount to ensure optimal performance and

resource utilization. Among the plethora of scheduling algorithms designed to address these

challenges, Weighted Round Robin (WRR) has emerged as a prominent contender. WRR, a

variant of the classic Round Robin scheduling, introduces a weighted mechanism that enables

the allocation of resources based on predefined priorities, thereby catering to the diverse

needs of applications and services in cloud environments. This method has gained traction

due to its ability to strike a balance between fairness and efficiency, ensuring that resources

are allocated proportionally according to the specified weights[1]. As cloud infrastructures

evolve and workloads become more dynamic and diverse, understanding the nuances of

WRR in the context of cloud computing is crucial. This paper embarks on a comprehensive

exploration of Weighted Round Robin scheduling, aiming to elucidate its advancements,

challenges, and implications for efficient resource allocation in cloud computing

environments. By delving into the intricacies of WRR, we seek to provide valuable insights

that contribute to the ongoing discourse on optimizing resource management in the ever-

evolving realm of cloud computing.

27

The Performance of the Different Algorithms on Cloud Computing Environment

 In other word it can describe as The need for effective load balancing systems has increased

in the dynamic world of cloud computing, where resource allocation is crucial to maintaining

scalability and optimum performance. Because of the complex interactions between several

servers, apps, and users, sophisticated algorithms that can distribute workloads wisely are

needed in order to avoid bottlenecks and maximize resource efficiency. A complex and

adaptable load balancing method that provides a sophisticated method of controlling

computing resources in cloud settings is Weighted Round Robin (WRR).Fundamentally,

Weighted Round Robin is a more sophisticated version of the classic Round Robin

scheduling algorithm. It adds a level of detail by giving distinct servers or resources different

weights. This gives the system the ability to give certain nodes more priority than others,

which can handle a variety of workloads and guarantee that resources are distributed

according to their capacities[2], [3]. The implementation of WRR becomes crucial in tackling

the issues associated with heterogeneity, scalability, and the constantly changing needs of

contemporary applications as enterprises progressively shift to cloud-based infrastructures.

The purpose of this investigation of Weighted Round Robin in cloud computing is to explore

the complexities of this load balancing technique, including its theoretical foundations, real-

world applications, and potential effects on the overall dependability and performance of

cloud-based systems. Cloud architects, system administrators, and IT specialists can promote

an agile and responsive infrastructure that seamlessly adapts to the dynamic nature of

contemporary computing environments by making informed decisions about resource

allocation based on their understanding of the guiding principles of WRR and its

applications.The following sections will walk you through the fundamentals of Weighted

Round Robin, look at its benefits and drawbacks, and investigate real-world situations where

it may be used to great use. We will also discuss how WRR fits in with more general

developments in cloud computing, such the emergence of containerization, microservices

architectures, and multi-cloud strategies[4]. We hope that this thorough examination will

provide readers with the understanding they need to fully use Weighted Round Robin and

influence the direction of cloud-based computing paradigms in the future.

Different methods of performing Weighted Round Robin Scheduling in cloud

computing:

In cloud computing, a complex and effective technique for allocating computational

resources across many jobs or services according to their individual weights is called

Weighted Round Robin (WRR) scheduling. In cloud settings, where varied workloads and

fluctuating resource needs are prevalent, this scheduling strategy seeks to improve fairness

and maximize resource use. Here, Table 1; explore the many approaches of implementing

Weighted Round Robin Scheduling:

Table 1: Illustrated the different methods for perform the Weighted Round Robin

Scheduling in cloud computing.

Sr. No. Methods Sub-methods

1. Weight Assignment Strategies
Static Weights

Dynamic Weights

2. Load Balancing Algorithms
Threshold-based WRR

Feedback-based WRR

28

The Performance of the Different Algorithms on Cloud Computing Environment

3. Integration with Performance Metrics

Latency-aware WRR

Throughput-oriented WRR

4. Queue Management Strategies
Queue-based WRR

Priority-based WRR

5. Fault Tolerance and Redundancy
Redundancy-aware WRR

Failure Recovery WRR

A. Weight Assignment Strategies:

a) Static Weights:

This method assigns weights to services or activities depending on preset criteria like

significance, priority, or past resource utilization. Static weights are simple and predictable

since they don't change during the scheduling process.

b) Dynamic Weights:

Dynamic weight assignment refers to the real-time modification of task or service weights

according to performance measurements, other dynamic variables, or the tasks' actual

resource utilization. With this adaptive strategy, resources are allocated more responsively

and workload fluctuations are better accommodated.

B. Load Balancing Algorithms:

a) Threshold-based WRR:

This approach adds thresholds to the task weights in order to dynamically modify them. To

guarantee optimal resource allocation, a task's weight is dynamically changed when its

resource utilization beyond a certain threshold. This lessens the chance of resource shortages

and enhances system performance in general.

b) Feedback-based WRR:

This method continually evaluates how tasks are performed and modifies their weights based

on feedback systems. System metrics, user happiness, and other pertinent indications may

provide feedback that the scheduler can utilize to make well-informed choices about resource

allocation[5].

C. Integration with Performance Metrics:

a) Latency-aware WRR:

This approach uses latency as a performance indicator and gives lower latency jobs priority.

The scheduler optimizes overall system responsiveness by guaranteeing that resources are

allocated to fulfill tougher latency limits by giving jobs with greater weights.

b) Throughput-oriented WRR:

With an emphasis on throughput optimization, this method divides jobs into weights

according to their processing power and data transmission needs. greater throughput needs

are given correspondingly greater weights to tasks, allowing for more effective use of the

resources that are available.

29

The Performance of the Different Algorithms on Cloud Computing Environment

 D. Queue Management Strategies:

a) Queue-based WRR:

When jobs are arranged in queues, this approach distributes resources according to the

weights given to each queue. Round-robin service is provided to tasks in a queue, and the

scheduler dynamically modifies queue weights to ensure fair resource allocation.

b) Priority-based WRR:

By adding priority levels to jobs, this technique enables the scheduler to distribute resources

according to both priority and weight. Higher priority tasks are given priority handling,

ensuring that vital workloads are sufficiently supported.

E. Fault Tolerance and Redundancy:

a) Redundancy-aware WRR:

This technique takes into account task redundancy needs since it recognizes the relevance of

fault tolerance in cloud systems. Higher weights may be given to tasks that need more

redundancy in order to guarantee the availability of redundant resources and improve system

dependability.

b) Failure Recovery WRR:

This method dynamically modifies weights to redistribute tasks and preserve optimum

resource use in the case of task or resource failures. In order to account for the altered

resource environment, the scheduler adjusts the weights of the remaining jobs in response to

failures.

To sum up, there are many approaches and algorithms used in cloud computing to implement

Weighted Round Robin Scheduling with the goals of optimizing performance, striking a

balance between resource allocation, and responding to changing workload scenarios. The

nature of the workload, the intended system behavior, and the particular objectives of the

cloud infrastructure all play a role in the technique selection[6].

Algorithm of Weighted Round Robin (WRR)

In cloud computing, the Weighted Round Robin (WRR) scheduling method is used to

distribute resources across many jobs or services according to their weights. The relative

relevance or priority of each activity or service is represented by the weights. Higher weight

jobs are allocated a proportionately bigger amount of resources, thanks to the algorithm. An

overview of the Weighted Round Robin algorithm is provided below:

class WeightedRoundRobinScheduler:

 def __init__(self, entities):

 """

 Initialize the Weighted Round Robin scheduler with a list of entities and their

corresponding weights.

 :param entities: A list of tuples, where each tuple is of the form (entity_id, weight).

 """

 self.entities = entities

30

The Performance of the Different Algorithms on Cloud Computing Environment

 self.total_weight = sum(weight for _, weight in entities)

 self.current_index = 0

 self.current_weight = 0

 def get_next_entity(self):

 """

 Get the next entity to be serviced based on the Weighted Round Robin algorithm.

 :return: The entity_id of the next entity to be serviced.

 """

 while True:

 entity_id, weight = self.entities[self.current_index]

 if weight > self.current_weight:

 self.current_weight += 1

 return entity_id

 # If the current entity has been serviced the required number of times, move to the

next entity.

 self.current_weight = 0

 self.current_index = (self.current_index + 1) % len(self.entities)

 def service_entity(self):

 """

 Simulate servicing the next entity. This function can be replaced with the actual logic

 of how the scheduler interacts with the entities.

 For example, if this were a network scheduler, servicing an entity might involve

allocating

 bandwidth to that entity for a certain time period.

 """

 entity_id = self.get_next_entity()

 print(f"Servicing entity {entity_id}")

Example usage:

entities = [("A", 3), ("B", 2), ("C", 1)]

scheduler = WeightedRoundRobinScheduler(entities)

for _ in range(10):

 scheduler.service_entity()

31

The Performance of the Different Algorithms on Cloud Computing Environment

 In above algorithm there is The “get_next_entity” function implements the Weighted Round

Robin logic, and the “service_entity” function simulates servicing the next entity. The

example usage at the end demonstrates how the scheduler can be used to allocate service to

entities based on their weights.

Advantages of the Weighted Round Robin Scheduling for Efficient Resource Allocation

in Cloud Computing Environments:

Several benefits are provided by the Weighted Round Robin (WRR) scheduling method for

effective resource allocation in cloud computing settings.

By giving entities weights, WRR provides equity in the allocation of resources and permits

prioritizing according to particular needs. This adaptability supports efficient resource use by

accommodating shifting workloads and resource requirements.

By giving critical services greater weights, reaction times may be shortened and system

performance can be improved overall. WRR scales effectively in large-scale cloud systems

with little overhead and an easy implementation, helping to minimize resource

monopolization and aid in load balancing. Because of its versatility, simplicity of setup, and

compatibility with several resource types, WRR is a flexible and effective option for

managing a wide range of resources in cloud computing settings.In cloud computing settings,

Weighted Round Robin (WRR) scheduling provides several benefits for effective resource

allocation[7]. The following are some of the main benefits:

a) Fairness in Resource Allocation:

WRR makes sure that resources are distributed equitably, taking into account the weights of

various organizations. Fair resource distribution is encouraged by giving entities with higher

weights a proportionately bigger share of the available resources.

b) Flexibility with Weight Assignments:

Weight assignments provide administrators the ability to give certain entities more priority

than others. In cloud settings, where various apps or services may have varied resource needs,

this flexibility is very helpful.

c) Support for Variable Workloads:

WRR adjusts well to shifting workloads. When demand is strong, entities with greater

weights may get more resources, but entities with lesser weights can still obtain their share.

This flexibility is essential for managing workloads that are dynamic and ever-changing in

cloud settings.

d) Effective Utilization of Resources:

WRR aids in the efficient use of resources by taking into account the weights given to

entities. It maximizes system performance by ensuring that entities with higher priorities or

resource needs get the resources they demand.

e) Reduced Response Time for Critical Services:

Applications or services that are deemed critical may be given greater weights to guarantee

that they get resources and attention right away. Reduced reaction times for crucial operations

or services may result from this, improving system performance as a whole.

32

The Performance of the Different Algorithms on Cloud Computing Environment

 f) Simple Implementation and Low Overhead:

The WRR method has a minimal computing cost and is rather easy to implement. Because of

this, it may be effectively used in cloud systems requiring extensive resource management, as

well as real-time situations.

g) Scalability:

WRR grows nicely as the number of entities increases. Large-scale cloud computing systems

may benefit from the scheduling algorithm's ability to distribute resources based on weights

even as the number of entities rises.

h) Load Balancing:

By ensuring that resources are allocated in a manner that prohibits any one entity from

monopolizing resources, WRR helps to achieve load balancing. This improves the general

stability and performance of the cloud infrastructure and aids in the avoidance of hotspots.

i) Compatibility with Various Resource Types:

WRR is applicable to several resource kinds, including memory, bandwidth, and CPU. It is a

flexible scheduling method that may be used to manage a variety of resources in cloud

computing settings because of its flexibility to different resource types[8].

j) Ease of Configuration and Tuning:

The weights given to entities may be simply configured and adjusted by system

administrators in response to changing needs. As a result, resource allocations may be

adjusted without requiring major adjustments to the underlying scheduling system.

To sum up, in cloud computing settings, weighted round robin scheduling offers a flexible

and balanced method of allocating resources, encouraging efficiency, fairness, and flexibility

in response to changing workloads.

DISCUSSION

The Weighted Round Robin Scheduling for efficient resource allocation in cloud computing

environments explores resource allocation, a crucial but sometimes disregarded component of

cloud computing. For cloud computing to function at its best and satisfy users, effective

resource management is essential in this dynamic and always changing environment. One

important participant in this space is the Weighted Round Robin (WRR) scheduling

algorithm, which provides a methodical way to divide resources across conflicting tasks or

processes. The assessment highlights the inherent fairness obtained by the Weighted Round

Robin scheduling method as one of its major characteristics[9]. The algorithm makes sure

that every activity gets a fair number of resources by giving weights to distinct activities

depending on their value or priority, avoiding resource famine for any given application or

service. In multi-tenant cloud systems, where a variety of workloads coexist, from basic web

apps to resource-intensive data processing jobs, this fairness is essential. The WRR method

also proves to be excellent at load balancing, which is another essential component of

resource allocation in cloud computing. Because the method is weighted, resources may be

allocated according to the unique requirements and demands of each activity. Because of its

flexibility, resources are distributed equitably, avoiding circumstances in which certain

activities are neglected while others are overworked. Consequently, the total performance of

the system is adjusted, resulting in increased responsiveness and efficiency. The study also

emphasizes how the Weighted Round Robin scheduling technique is scalable, which makes it

33

The Performance of the Different Algorithms on Cloud Computing Environment

 ideal for cloud computing settings that are dynamic. By modifying the weights allocated to

various activities, the WRR algorithm can quickly react to shifting workloads as the demand

for resources varies. Because of this flexibility, cloud service providers may more effectively

scale their resources to meet changing customer needs, which increases the overall resilience

of the system. The study clarifies how important the Weighted Round Robin scheduling

method is to the effective distribution of resources in cloud computing settings[10]. In the

intricate and ever-changing world of cloud computing, its capacity to provide fairness, load

balancing, and scalability makes it an invaluable instrument for maximizing efficiency and

guaranteeing a flawless user experience. The benefits of the WRR algorithm make cloud

computing an appealing option for businesses looking to maximize system efficiency and

resource consumption as it develops further.

CONCLUSION

As a conclusion, this study highlights how important this scheduling algorithm is for

resolving important issues related to cloud resource allocation. Because of its scalability, load

balancing capabilities, and intrinsic fairness, the Weighted Round Robin algorithm is a great

tool for cloud service providers looking to maximize customer happiness and performance.

Because the algorithm places a strong focus on fairness, resources are allocated among a

variety of jobs in an equitable manner, reducing resource hunger and improving user

experience overall. Its skill at load balancing also ensures that resources are assigned

according to task needs, avoiding under- or over-burdening certain applications. The flexible

nature of workloads in cloud computing is well-suited for this dynamic approach to resource

allocation, which enhances system performance. Furthermore, one significant benefit of the

Weighted Round Robin scheduling system is its scalability. By modifying task weights, the

system effortlessly adjusts to shifting workloads, enabling cloud providers to scale resources

in response to varying needs. This adaptability is crucial for maintaining the responsiveness

and resilience of cloud infrastructure, which can handle different user activity levels without

sacrificing efficiency. It is impossible to overestimate the significance of effective resource

allocation as cloud computing develops. As this study has shown, the Weighted Round Robin

scheduling algorithm is a reliable way to deal with the complex problems related to resource

allocation in dynamic cloud systems. Because of its benefits in load balancing, fairness, and

scalability, it is positioned as a critical enabler for businesses looking to optimize the use of

their cloud resources and provide users the best possible experience. Cloud service providers

may improve the responsiveness, efficiency, and flexibility of their infrastructure by using the

Weighted Round Robin algorithm, which will eventually help to propel cloud computing

technologies forward.

REFERENCES:

[1] L. Ji, T. N. Arvanitis, and S. I. Woolley, “Fair weighted round robin scheduling

scheme for DiffServ networks,” Electron. Lett., 2003, doi: 10.1049/el:20030209.

[2] L. B. Le, E. Hossain, and A. S. Alfa, “Service differentiation in multirate wireless

networks with weighted round-robin scheduling and ARQ-based error control,” IEEE

Trans. Commun., 2006, doi: 10.1109/TCOMM.2005.863788.

[3] P. D. Kusuma, “Weighted round robin based production scheduling model for seasonal

product,” J. Theor. Appl. Inf. Technol., 2020.

[4] S. Park, J. Kim, G. M. Tihfon, H. Y. Ryu, and J. Kim, “Dynamic multimedia

transmission control virtual machine using weighted Round-Robin,” Cluster Comput.,

2016, doi: 10.1007/s10586-015-0524-y.

34

The Performance of the Different Algorithms on Cloud Computing Environment

 [5] T. Li, D. Baumberger, and S. Hahn, “Efficient and scalable multiprocessor fair

scheduling using distributed weighted round-robin,” ACM SIGPLAN Not., 2009, doi:

10.1145/1594835.1504188.

[6] J. Heißwolf, R. Konig, and J. Becker, “A scalable NoC router design providing QoS

support using weighted round robin scheduling,” in Proceedings of the 2012 10th

IEEE International Symposium on Parallel and Distributed Processing with

Applications, ISPA 2012, 2012. doi: 10.1109/ISPA.2012.93.

[7] D. Tychalas and H. Karatza, “An Advanced Weighted Round Robin Scheduling

Algorithm,” in ACM International Conference Proceeding Series, 2020. doi:

10.1145/3437120.3437304.

[8] A. Manirabona, S. Boudjit, and L. C. Fourati, “A Priority-Weighted Round Robin

scheduling strategy for a WBAN based healthcare monitoring system,” in 2016 13th

IEEE Annual Consumer Communications and Networking Conference, CCNC 2016,

2016. doi: 10.1109/CCNC.2016.7444760.

[9] S. Zare and A. Ghaffarpour Rahbar, “An FEC scheme combined with weighted

scheduling to reduce multicast packet loss in IPTV over PON,” J. Netw. Comput.

Appl., 2012, doi: 10.1016/j.jnca.2011.09.008.

[10] D. Rathore, A. Shukla, and G. K. Jaiswal, “Performance Evaluation of Weighted

Round Robin Scheduling for WiMAX Networks Using Qualnet Simulator 6.1,” IOSR

J. Electron. Commun. Eng., 2014, doi: 10.9790/2834-09257781.

35

The Performance of the Different Algorithms on Cloud Computing Environment

 CHAPTER 5

AN IN-DEPTH ANALYSIS OF FIRST COME

FIRST SERVE (FCFS) SCHEDULING ALGORITHMS

IN CLOUD COMPUTING WITH ITS UNRAVELING PRINCIPLES
Dr. Trapty Agarwal, Associate Professor,

Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar

Pradesh, India.

Email Id- trapty@muit.in

ABSTRACT:

The fundamental ideas, practical uses, and difficulties of the First Come First Serve (FCFS)

Scheduling Algorithms are thoroughly examined in this study. The first section of the paper

delves deeply into the basic ideas that underpin FCFS scheduling and clarifies its approach of

sequential execution. The study then looks at the many ways that FCFS algorithms are used

in many fields, emphasizing how useful and effective they are in practical situations.

Additionally, the study examines the difficulties related to FCFS scheduling, including

concerns about equity, effectiveness, and flexibility in changing circumstances.

The paper explains the subtleties of FCFS algorithms and their effect on system performance

using a mix of theoretical frameworks and real-world case studies.This study adds to a better

understanding of FCFS scheduling algorithms by combining knowledge from theoretical

analyses and empirical observations. It also offers practitioners, researchers, and system

architects’ useful information for optimizing scheduling mechanisms in a range of computing

environments.

KEYWORDS:

FCFS Scheduling, First Come First Serve, Paradigm, Principles, Unraveling.

INTRODUCTION

Cloud computing has become a disruptive paradigm in the ever-changing environment of

modern computing, revolutionizing the ways in which computer resources are delivered,

managed, and used. Cloud systems' inherent scale and adaptability have made it possible for

previously unheard-of breakthroughs in a variety of industries, from commercial operations

to scientific research. The complex coordination of operations is essential to the smooth

operation of cloud infrastructures, and scheduling algorithms are essential for maximizing

resource use and improving system performance.

The First Come First Serve (FCFS) algorithm is a basic scheduling algorithm used in cloud

computing settings. It is a simple yet effective approach that processes jobs according to the

order in which they arrive. FCFS has been widely used in a variety of computer disciplines

due to its simple execution method. However, there are interesting difficulties and research

possibilities due to its effectiveness and flexibility in the dynamic and diverse cloud

computing world[1].

This thorough examination explores the complexities of FCFS scheduling algorithms within

the framework of cloud computing, revealing the fundamental ideas that underpin their

operation. The investigation covers a broad range of topics, from theoretical underpinnings to

real-world applications, with the ultimate objective of providing insightful information on the

benefits, drawbacks, and possible enhancements of FCFS in cloud settings. The first part of

the paper lays the theoretical foundation, explaining the fundamental ideas that support FCFS

36

The Performance of the Different Algorithms on Cloud Computing Environment

 scheduling on the cloud. As we set out on this adventure, we want to analyze the workings of

the algorithm and examine how well it can adapt to the changing needs of contemporary

computer infrastructures. The study then moves into real-world situations, where the

effectiveness of FCFS is assessed against different workloads, resource configurations, and

system dynamics. Additionally, this research explores how FCFS manages variations in

workload intensity, resource availability, and the creation of alternative computing paradigms

in order to solve the issues presented by the dynamic nature of cloud environments[2]. A lot

of focus is placed on identifying possible bottlenecks and suggesting creative solutions to

improve the algorithm's robustness and flexibility.

Essentially, the goal of this investigation of FCFS scheduling algorithms in cloud computing

is to both provide insightful information that may guide the further development of cloud-

based infrastructures and to unearth the underlying principles guiding its functioning. This

analysis aims to provide a basis for future developments in scheduling algorithms by

promoting a deeper comprehension of the nuances surrounding FCFS in the context of cloud

computing. This will help to facilitate the continuous optimization of cloud resources and the

realization of more effective and responsive computing environments.

History of the First Come First Serve (FCFS) Scheduling Algorithms in Cloud

Computing:

First Come First Serve (FCFS) scheduling algorithms in cloud computing have a long history

that is closely linked to the development of computing paradigms and the unwavering quest

for effective resource use in dynamic, distributed systems. Although FCFS has its origins in

early computer systems, the revolutionary changes in technology and the growing need for

scalable, on-demand processing resources have molded its adaption and use in cloud

computing[3].

a) Early Computer Systems (1950s-1960s):

Scheduling methods, such as FCFS, have existed since the early days of computer systems. In

the 1950s and 60s, when computers were mostly used for military and scientific purposes,

simple scheduling techniques were used to control job completion. The FCFS algorithm

gained popularity because it was simple to construct and processed tasks based on arrival

order in an easy-to-understand way.

b) Mainframes and Time-Sharing Systems (1960s-1970s):

The necessity for effective job scheduling increased as computer systems developed into

mainframes and time-sharing systems. In these settings, FCFS remained a widely used

scheduling method, guaranteeing an equitable allocation of computational resources among

many users. Because of its simplicity, it was a popular option for early operating systems that

prioritized ease of use and simplicity[4].

c) Distributed Systems (1980s-1990s):

The 1980s saw the emergence of distributed computing, which presented scheduling

algorithms with both new difficulties and possibilities. Although useful in certain situations,

FCFS has trouble managing the complexity of distributed systems. In order to maximize

resource use in networked computer systems, the emphasis switched to increasingly complex

scheduling techniques.

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Represents the History of the First Come First Serve (FCFS) Scheduling.

d) Advent of Cloud Computing (2000s):

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Represents the History of the First Come First Serve (FCFS) Scheduling.

Advent of Cloud Computing (2000s):

37

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Represents the History of the First Come First Serve (FCFS) Scheduling.

38

The Performance of the Different Algorithms on Cloud Computing Environment

 The emergence of cloud computing in the 21st century brought about a paradigm change in

the provisioning and use of computer resources. With its simplicity and historical importance,

FCFS acquired fresh relevance in the context of cloud settings. One of the fundamental

scheduling algorithms used by cloud service providers was FCFS, especially in situations

where simplicity and fairness were considered important considerations.

e) Optimizations and Adaptations (2010s-2020s):

The limits of classic FCFS solutions became evident as cloud computing advanced,

particularly when dealing with fluctuating workloads and dynamic resource needs. FCFS has

been optimized and adapted by researchers and practitioners to improve its performance in

cloud settings. Research focused on integrating load balancing methods, dynamic resource

allocation algorithms, and predictive models to improve FCFS's adaptability and resilience to

changing workloads.

f) Current Landscape and Future Directions:

Currently, a lot of cloud computing systems still use FCFS as their core scheduling method.

Its continuous importance is highlighted by its historical significance as well as by current

research and technological developments. On the other hand, the investigation of increasingly

complex scheduling algorithms and hybrid techniques points to a larger trend in cloud

computing toward the optimization of task execution and resource allocation[5].

The development of computing paradigms has been mirrored in the history of FCFS

scheduling algorithms in cloud computing, which exhibit a trajectory of adaptation and

improvement. The tactics used in scheduling algorithms will also change as cloud

environments do, with FCFS probably continuing to be a fundamental component, although

one that is always being molded by the needs of contemporary, dynamic computing

ecosystems.

Algorithm of the First Come First Serve (FCFS) Scheduling:

The First Come First Serve (FCFS) scheduling algorithm is one of the simplest scheduling

algorithms used in computer systems. It is a non-preemptive scheduling algorithm, meaning

once a process starts execution, it continues until it completes. Here's a simple algorithm for

FCFS scheduling:

1) Input:

A list of processes with their arrival times and burst times.

2) Initialize:

a) Set the current time to 0.

b) Create a queue to hold the processes.

3) Sort Processes:

a) Sort the processes based on their arrival times in ascending order.

4) Execution:

While there are processes in the queue:

a) Dequeue the first process from the queue.

39

The Performance of the Different Algorithms on Cloud Computing Environment

 b) Update the current time to the maximum of the current time and the arrival time of

the dequeued process.

c) Execute the process until its completion.

d) Update the current time to the completion time of the executed process.

e) Record the turnaround time and waiting time for the executed process.

Output:

a) Average turnaround time and average waiting time.

Here's a simple pseudocode representation:

function FCFS_Scheduling(processes):

 sort processes based on arrival times

 current_time = 0

 queue = empty_queue()

 total_turnaround_time = 0

 total_waiting_time = 0

 while processes not empty:

 process = dequeue(processes)

 current_time = max(current_time, process.arrival_time)

 // Execute the process

 execute_process(process)

 // Update turnaround time and waiting time

 turnaround_time = current_time - process.arrival_time

 waiting_time = turnaround_time - process.burst_time

 total_turnaround_time += turnaround_time

 total_waiting_time += waiting_time

 current_time += process.burst_time

 average_turnaround_time = total_turnaround_time / number_of_processes

 average_waiting_time = total_waiting_time / number_of_processes

 return average_turnaround_time, average_waiting_time

Advantages of the First Come First Serve (FCFS) Scheduling Algorithms in Cloud

Computing:

A straightforward scheduling technique called First Come First Serve (FCFS) is often used in

a variety of computer contexts, including cloud computing. FCFS has certain benefits in the

context of cloud computing, while not being the most complex scheduling algorithm. These

are a few of the benefits:

The Performance of the Different Algorithms on Cloud Computing Environment

a) Simplicity:

FCFS is simple to use and comprehend. Because of its simplicity, it is the recommended

option in situations when the scheduling overhead must be kept to a minimum. Large

numbers of activities and resources are often handled in cloud computing settings; a simple

scheduling technique such as FCFS helps to reduce complexity

Figure 2: Illustrated the advantages of the FCFS scheduling algorithm.

b) Fairness:

By processing tasks in the order they are received, FCFS guarantees fairness. There is no

preference for any one work or user over another; all tasks have an equal chance of being

completed. Fairness is a crucial factor in cloud computing, as resources are shared by several

users and applications.

c) Predictability:

FCFS is predictable because of its determi

sequence in which their activities will be completed might be useful for workload planning

and management. In cloud computing, predictability is essential to meeting user expectations

and service level agreements (SLAs).

d) Low Overhead:

Because FCFS doesn't need complicated algorithms or frequent modifications, it has a

minimal scheduling overhead. This may be helpful in cloud situations where effective

resource management is crucial. Reduced overhead enhanc

use of resources.

The Performance of the Different Algorithms on Cloud Computing Environment

FCFS is simple to use and comprehend. Because of its simplicity, it is the recommended

ion in situations when the scheduling overhead must be kept to a minimum. Large

numbers of activities and resources are often handled in cloud computing settings; a simple

scheduling technique such as FCFS helps to reduce complexity[6].

Figure 2: Illustrated the advantages of the FCFS scheduling algorithm.

By processing tasks in the order they are received, FCFS guarantees fairness. There is no

for any one work or user over another; all tasks have an equal chance of being

completed. Fairness is a crucial factor in cloud computing, as resources are shared by several

FCFS is predictable because of its deterministic nature. The ability for users to predict the

sequence in which their activities will be completed might be useful for workload planning

and management. In cloud computing, predictability is essential to meeting user expectations

reements (SLAs).

Because FCFS doesn't need complicated algorithms or frequent modifications, it has a

minimal scheduling overhead. This may be helpful in cloud situations where effective

resource management is crucial. Reduced overhead enhances responsiveness and the efficient

40

The Performance of the Different Algorithms on Cloud Computing Environment

FCFS is simple to use and comprehend. Because of its simplicity, it is the recommended

ion in situations when the scheduling overhead must be kept to a minimum. Large

numbers of activities and resources are often handled in cloud computing settings; a simple

Figure 2: Illustrated the advantages of the FCFS scheduling algorithm.

By processing tasks in the order they are received, FCFS guarantees fairness. There is no

for any one work or user over another; all tasks have an equal chance of being

completed. Fairness is a crucial factor in cloud computing, as resources are shared by several

nistic nature. The ability for users to predict the

sequence in which their activities will be completed might be useful for workload planning

and management. In cloud computing, predictability is essential to meeting user expectations

Because FCFS doesn't need complicated algorithms or frequent modifications, it has a

minimal scheduling overhead. This may be helpful in cloud situations where effective

es responsiveness and the efficient

41

The Performance of the Different Algorithms on Cloud Computing Environment

 e) Ease of Implementation and Maintenance:

Maintaining and implementing FCFS is simple. Cloud computing companies may easily

implement and maintain FCFS scheduling, negating the need for complex monitoring

systems or ongoing modifications.

f) No Starvation:

FCFS assures that all tasks are ultimately processed, hence preventing starvation. In cloud

computing, where resources are shared by many users, keeping users from becoming hungry

is essential to keeping the system responsive and balanced.

g) FIFO (First-In-First-Out) Order:

Tasks in FCFS are completed in the order in which they are received, or in FIFO order.

Applications or workloads that can be executed sequentially and are not sensitive to priority

may benefit from this simplicity[7].

h) Stability:

Due to its ability to prevent frequent changes in the execution order, FCFS offers resource

allocation stability. In situations where quick shifts in work priority might result in ineffective

resource use, this stability can be helpful.

Despite these benefits, it's important to remember that FCFS may not be the ideal option in

every cloud computing situation, particularly when taking turnaround time and system

performance into account. In certain circumstances, more complex scheduling algorithms,

including Round Robin or Shortest Job Next (SJN), may be selected to maximize

performance depending on particular requirements.

DISCUSSION

In cloud computing systems, job scheduling is a crucial component that directly affects

system performance, resource use, and user happiness in general. The First Come First Serve

(FCFS) method is one of the most well-known scheduling algorithms used in these dynamic

and distributed systems. The objective of this comprehensive investigation is to examine the

complexities of FCFS scheduling inside the cloud computing environment, elucidating its

fundamental concepts and illuminating its influence on system performance. Tasks are

prioritized by FCFS according to arrival order, as the name implies; tasks that arrive first are

handled first. Although this simplicity may seem uncomplicated, it has significant

ramifications for the cloud computing industry. The examination starts by going over the

foundational ideas of FCFS and looking at how it functions in a virtualized and distributed

environment where resources are shared by many users and applications.The intrinsic fairness

of FCFS scheduling in cloud computing is one of its main features; it minimizes possible bias

by guaranteeing that tasks be completed in the order that they are submitted. But this

equitable technique could not work in many situations, especially when activities have

different computing demands or resource needs[8]. These issues will be covered in detail,

along with circumstances in which FCFS may not be the best option and might lead to

underuse of resources or wasteful allocation. Moreover, the examination includes the

performance indicators related to FCFS scheduling in cloud settings. With a thorough

analysis of variables including reaction time, throughput, and system usage, the talk seeks to

shed light on the advantages and disadvantages of FCFS. This entails taking into account

actual situations where FCFS could succeed or fail, providing a nuanced viewpoint on its

suitability in various cloud computing settings[9].The debate also looks at modifications and

42

The Performance of the Different Algorithms on Cloud Computing Environment

 improvements to FCFS scheduling, such priority-based extensions and preemption

techniques, to further deepen the study. By addressing some of the flaws in the fundamental

FCFS, these changes hope to provide a more flexible scheduling option for cloud settings that

are dynamic. Finally, this thorough examination offers a thorough investigation of the FCFS

scheduling algorithm in the context of cloud computing. This discussion aims to add to the

continuing conversation on task scheduling optimization in cloud environments by dissecting

its fundamentals and examining its performance characteristics. In the end, it hopes to help

practitioners and researchers make well-informed decisions when choosing or modifying

scheduling algorithms for their particular use cases[10].

CONCLUSION

Conclusively, the comprehensive examination of First Come First Serve (FCFS) scheduling

algorithms within the framework of cloud computing has yielded significant knowledge

about the complexities of this extensively used methodology. After analyzing the

fundamentals of FCFS and applying them to dynamic, distributed cloud systems, we have

discovered the advantages and disadvantages of this scheduling technique. By prioritizing

jobs according to their arrival sequence, FCFS provides inherent fairness in task processing

with its simple "first in, first out" methodology. But as the paper explains, this ease of use

might present problems in situations where there are differences in the amount of processing

power and resources needed. The inflexibility of the algorithm for managing a range of

workloads might result in worse than ideal performance metrics and resource use. The

analysis has shown how crucial it is to take system dynamics and real-world use cases into

account when selecting scheduling algorithms for cloud computing. FCFS may work well in

certain situations, but its drawbacks highlight the need of a more sophisticated method of

work scheduling. Moreover, the investigation of FCFS extensions and improvements,

including priority-based extensions and preemption techniques, highlights the flexibility

needed to satisfy the requirements of changing cloud environments. The results of this

investigation add to our knowledge of FCFS scheduling algorithms and help academics and

practitioners make more informed judgments as cloud computing develops. The conversation

inspires new research into hybrid scheduling strategies or the use of more advanced

algorithms to overcome the noted drawbacks. In the end, this analysis acts as a springboard

for further study and innovation targeted at improving work scheduling techniques in the

dynamic field of cloud computing.

REFERENCES:

[1] S. H. H. Madni, M. S. Abd Latiff, M. Abdullahi, S. M. Abdulhamid, and M. J. Usman,

“Performance comparison of heuristic algorithms for task scheduling in IaaS cloud

computing environment,” PLoS One, 2017, doi: 10.1371/journal.pone.0176321.

[2] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling based on load

balancing ant colony optimization,” Proc. - 2011 6th Annu. ChinaGrid Conf.

ChinaGrid 2011, 2011, doi: 10.1109/ChinaGrid.2011.17.

[3] D. I. Esa and A. Yousif, “Scheduling jobs on cloud computing using firefly

algorithm,” Int. J. Grid Distrib. Comput., 2016, doi: 10.14257/ijgdc.2016.9.7.16.

[4] N. M. A. Samee, S. S. Ahmed, and R. A. A. A. A. Seoud, “Metaheuristic algorithms

for independent task scheduling in symmetric and asymmetric cloud computing

environment,” J. Comput. Sci., 2019, doi: 10.3844/jcssp.2019.594.611.

43

The Performance of the Different Algorithms on Cloud Computing Environment

 [5] R. Vihol, H. Patel, and N. Patel, “Workload Consolidation using Task Scheduling

Strategy Based on Genetic Algorithm in Cloud Computing,” Orient. J. Comput. Sci.

Technol., 2017, doi: 10.13005/ojcst/10.01.08.

[6] M. Kumar and S. C. Sharma, “Load balancing algorithm to minimize the makespan

time in cloud environment,” UK World J. Model. Simul., 2018.

[7] R. K. Sanodiya, S. Sharma, V. Sharma, R. Gandhi, P. Vishwavidyalaya, and B. M. P -

India, “A Highest Response Ratio Next(HRRN) Algorithm Based Load Balancing

Policy For Cloud Computing,” Int. J. Comput. Sci. Trends Technol., 2013.

[8] Shivani, A. Singh, A. Singhrova, and J. Kumar, “A Makespan Based Framework for

Detection of SLA Violations in Cloud Computing Environment,” in Advances in

Intelligent Systems and Computing, 2020. doi: 10.1007/978-981-15-0751-9_47.

[9] A. Uzbekov and J. Altmann, “Enabling business-preference-based scheduling of cloud

computing resources,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017.

doi: 10.1007/978-3-319-61920-0_16.

[10] K. N. Kumar and R. Mitra, “Resource Allocation for Heterogeneous Cloud Computing

Using Weighted Fair-Share Queues,” in Proceedings - 7th IEEE International

Conference on Cloud Computing in Emerging Markets, CCEM 2018, 2018. doi:

10.1109/CCEM.2018.00014.

44

The Performance of the Different Algorithms on Cloud Computing Environment

 CHAPTER 6

ANALYZING OF THE SHORTEST JOB NEXT (SJN) SCHEDULING

ALGORITHM IN CLOUD COMPUTING
Dr. Trapty Agarwal, Associate Professor,

Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar

Pradesh, India.

Email Id- trapty@muit.in

ABSTRACT:

The way that cloud computing is shaping current computing paradigms makes it necessary to

optimize resource use and schedule tasks in order to boost system efficiency as a whole. In

the context of cloud computing settings, the Shortest Job Next (SJN) scheduling method is

examined in depth in this study. The SJN algorithm is examined for its performance and

adaptability in the dynamic and scalable environment of cloud platforms. It is well-known for

its simplicity and efficacy in conventional operating systems. This research does a thorough

assessment and analyzes the benefits and drawbacks of SJN in cloud computing settings,

taking into account variables like workload variety, task arrival patterns, and resource

allocation dynamics. In the process of improving work scheduling mechanisms in cloud

settings, academics, practitioners, and system architects hope to gain important insights from

the results, which will eventually enhance the development of effective and responsive cloud

computing systems.

KEYWORDS:

Job Scheduling, Shortest Job Next, Scheduling Algorithm, System Efficiency, Workload

Variety.

INTRODUCTION

The emergence of cloud computing has caused a paradigm change in the provisioning,

management, and use of computational resources in the ever-changing world of modern

computing. The efficiency and effectiveness of cloud computing systems are contingent upon

the optimization of resource allocation and task scheduling, as businesses and organizations

increasingly turn to cloud-based infrastructures to meet their varied and changing

computational demands. Of all the scheduling algorithms, the Shortest Job Next (SJN)

method is one that should be carefully examined in the complex setting of cloud computing

since it is known for being straightforward and effective in conventional operating systems.

The SJN algorithm has shown its effectiveness in traditional computing systems in the past.

Its goal is to reduce turnaround time by choosing the smallest work in a queue for execution.

Nevertheless, a unique set of constraints brought forth by the cloud computing paradigm such

as virtualization, dynamic resource provisioning, and fluctuating demand patterns make a

detailed investigation of the SJN algorithm's performance and adaptability within this

dynamic environment imperative[1].

In the context of cloud computing, this study conducts a thorough investigation of the

Shortest Job Next (SJN) scheduling method. The main goal is to clarify the complexities of

the SJN algorithm and identify its suitability, advantages, and possible drawbacks in the

particular and intricate environment of cloud-based infrastructures. Through a close

examination of the SJN algorithm's performance in cloud computing situations, this study

aims to provide a comprehensive knowledge of its behavior in various circumstances. This

paper seeks to make a significant contribution to the current discussion on task scheduling

mechanism optimization in cloud settings by delving deeply into task arrival patterns,

45

The Performance of the Different Algorithms on Cloud Computing Environment

 workload variety, and resource allocation dynamics. It is expected that academics,

practitioners, and system architects working to improve the responsiveness and effectiveness

of cloud computing systems would find great value in the insights gained from this

examination. With cloud computing still dominating the information technology space, more

research into the SJN scheduling algorithm in this setting has the potential to spur significant

progress that will influence the direction of cloud-based computing paradigms in the

future[2].

Methods for the Shortest Job Next (SJN) Scheduling Algorithm in Cloud Computing:

Several crucial techniques are used in the Shortest Job Next (SJN) scheduling algorithm's

implementation in cloud computing to maximize resource allocation and job execution. A

key component is the dynamic estimate of job durations, in which the system continually

observes and forecasts the anticipated time of execution for every task by using workload

characteristics, past data, and the status of the system at that moment.

The algorithm may decide on job allocation and prioritizing based on this dynamic estimate.

In cloud computing, the SJN algorithm may also make use of load balancing techniques to

divide work equally across available resources. By avoiding resource underuse or overload

on certain cloud infrastructure nodes, load balancing guarantees optimum resource use. This

might include allocating jobs based on an ongoing evaluation of each node's burden.

Furthermore, adaptive approaches are essential to the SJN algorithm's performance given the

dynamic nature of cloud settings.

The algorithm may adapt its parameters and criteria for generating decisions to account for

variations in workload patterns, system circumstances, and resource availability thanks to

adaptive approaches. This flexibility guarantees that, even in the face of changing cloud

computing settings, the SJN algorithm will continue to be reliable and responsive[3]. There

are some different methods for SJN is mentioned in Figure 1 and discussed below:

a) Dynamic Job Duration Estimation:

Constantly tracking and estimating the duration of tasks based on past performance, workload

parameters, and system state and makes judgments in real time about resource allocation and

job priority by using dynamic estimate.

b) Task Prioritization:

Gives tasks a priority rating according to how long they should take to complete. Prioritizes

shorter jobs for instantaneous execution, hence decreasing the total turnaround time of the

work.

c) Preemption Mechanisms:

Permits the SJN algorithm to pause and resume a running task in the event that a shorter work

becomes available and allows for the effective use of resources by handling lesser tasks

without postponing the conclusion of longer-term projects[4].

d) Load Balancing Strategies:

Evaluates the workload on every cloud infrastructure node on a regular basis and equally

distributes work across available resources to avoid underuse or overload on certain nodes,

enhancing system performance as a whole.

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Represents the different methods for the Shortest Job Next (SJN) Scheduling

e) Adaptive Techniques:

Modifies algorithmic parameters and criteria for generating decisions in response to

variations in system circumstances, resource avail

the SJN algorithm's capacity to adjust to dynamic changes in the cloud environment,

guaranteeing reliable performance.

f) Predictive Analytics:

Makes use of analytics and predictive modeling to project future worklo

resource requirements and facilitates proactive decision

averting any obstructions or scarcity of resources.

g) Machine Learning Integration:

Uses machine learning methods to forecast the best work scheduling t

past data. Improves the SJN algorithm's capacity to pick up new information and adjust to

changing cloud computing situations

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Represents the different methods for the Shortest Job Next (SJN) Scheduling

Algorithm.

Adaptive Techniques:

Modifies algorithmic parameters and criteria for generating decisions in response to

variations in system circumstances, resource availability, and workload patterns and improves

the SJN algorithm's capacity to adjust to dynamic changes in the cloud environment,

guaranteeing reliable performance.

Makes use of analytics and predictive modeling to project future worklo

resource requirements and facilitates proactive decision-making in the allocation of tasks,

averting any obstructions or scarcity of resources.

Machine Learning Integration:

Uses machine learning methods to forecast the best work scheduling techniques by analyzing

past data. Improves the SJN algorithm's capacity to pick up new information and adjust to

changing cloud computing situations[5].

46

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Represents the different methods for the Shortest Job Next (SJN) Scheduling

Modifies algorithmic parameters and criteria for generating decisions in response to

ability, and workload patterns and improves

the SJN algorithm's capacity to adjust to dynamic changes in the cloud environment,

Makes use of analytics and predictive modeling to project future workload trends and

making in the allocation of tasks,

echniques by analyzing

past data. Improves the SJN algorithm's capacity to pick up new information and adjust to

47

The Performance of the Different Algorithms on Cloud Computing Environment

 h) Parallel Task Execution:

Looks for ways to run separate activities in parallel to increase system throughput overall.

Finds and plans jobs that may be completed simultaneously to save downtime and optimize

resource use.

i) Queue Management:

Manages task queues effectively, taking into account variables like task arrival rates and

queue durations and puts techniques for work queue organization and prioritization into

practice to speed up the scheduling process.

j) Real-Time Monitoring:

Incorporates performance and system metrics real-time monitoring. Constantly feeds back

input to the SJN algorithm so that it may be dynamically adjusted to respond to changing

cloud environment circumstances.

All of these different approaches work together to make the Shortest Job Next (SJN)

Scheduling Algorithm more successful at handling the special problems that arise from the

dynamic and scalable nature of cloud computing[6].

Algorithm of the Shortest Job Next (SJN) Scheduling:

A non-preemptive scheduling technique called Shortest Job Next (SJN), formerly called

Shortest Job First (SJF), chooses the process to run next based on its total remaining

processing time. The following is a rudimentary method for scheduling the Shortest Job Next:

A. Input:

List of processes with their arrival times and burst times.

B. Sort the processes:

Sort the processes based on their arrival times.

C. Initialize:

a) Set the current time to 0.

b) Create an empty ready queue.

c) Create an empty list to hold the completed processes.

D. Main Loop:

a) Repeat until all processes are completed.

b) Check the arrival times of processes.

c) If any process arrives at the current time, add it to the ready queue.

E. Select the shortest job:

a) If the ready queue is not empty:

b) Sort the ready queue based on burst times (shortest job first).

c) Dequeue the process with the shortest burst time.

48

The Performance of the Different Algorithms on Cloud Computing Environment

 F. Execute the selected process:

a) Update the current time to the completion time of the selected process.

b) Update the turnaround time and waiting time for the selected process.

c) Add the selected process to the list of completed processes.

G. Repeat:

a) Repeat the main loop until all processes are completed.

H. Calculate metrics:

a) Calculate the average turnaround time and average waiting time for all completed

processes.

Here's a simplified pseudocode representation of the algorithm:

def shortest_job_next(processes):

 # Sort processes based on arrival times

 processes.sort(key=lambda x: x['arrival_time'])

 current_time = 0

 ready_queue = []

 completed_processes = []

 while processes or ready_queue:

 # Check for arriving processes

 while processes and processes[0]['arrival_time'] <= current_time:

 ready_queue.append(processes.pop(0))

 if ready_queue:

 # Sort ready queue based on burst times

 ready_queue.sort(key=lambda x: x['burst_time'])

 # Dequeue the process with the shortest burst time

 selected_process = ready_queue.pop(0)

 # Execute the selected process

 current_time += selected_process['burst_time']

 selected_process['completion_time'] = current_time

 selected_process['turnaround_time'] = current_time - selected_process['arrival_time']

 selected_process['waiting_time'] = selected_process['turnaround_time'] -

selected_process['burst_time']

 completed_processes.append(selected_process)

 else:

The Performance of the Different Algorithms on Cloud Computing Environment

 # No processes in the ready queue, move to the next arrival time

 current_time = processes[0]['arrival_time']

 return completed_processes

Advantages of the Shortest Job Next (SJN) Scheduling:

A scheduling technique called Shortest Job Next

(SJF), assigns tasks a priority depending on how long they take to process. When it comes to

cloud computing, SJN scheduling has several benefits

Figure 2: Illustrated the advantages

a) Minimization of Waiting Time:

SJN prioritizes the shortest jobs first in an effort to reduce task waiting times. As a

consequence, individual activities are completed more quickly, which increa

efficiency as a whole.

b) Resource Optimization:

SJN contributes to resource optimization in the cloud environment by starting with shorter

workloads. This is especially helpful in situations where resources are deallocated and

assigned dynamically according to workload

c) Enhanced Throughput:

Cloud computing systems may operate at better throughput thanks to SJN scheduling. Shorter

jobs are prioritized because they enable the system to do more tasks in a shorter amount of

time, improving system performance as a whole.

The Performance of the Different Algorithms on Cloud Computing Environment

No processes in the ready queue, move to the next arrival time

current_time = processes[0]['arrival_time']

return completed_processes

Advantages of the Shortest Job Next (SJN) Scheduling:

A scheduling technique called Shortest Job Next (SJN), formerly called Shortest Job First

(SJF), assigns tasks a priority depending on how long they take to process. When it comes to

cloud computing, SJN scheduling has several benefits which is mention in Figure 2

Figure 2: Illustrated the advantages of the Shortest Job Next (SJN) Scheduling in cloud

computing.

Minimization of Waiting Time:

SJN prioritizes the shortest jobs first in an effort to reduce task waiting times. As a

consequence, individual activities are completed more quickly, which increa

Resource Optimization:

SJN contributes to resource optimization in the cloud environment by starting with shorter

workloads. This is especially helpful in situations where resources are deallocated and

according to workload[7].

Enhanced Throughput:

Cloud computing systems may operate at better throughput thanks to SJN scheduling. Shorter

jobs are prioritized because they enable the system to do more tasks in a shorter amount of

system performance as a whole.

49

The Performance of the Different Algorithms on Cloud Computing Environment

(SJN), formerly called Shortest Job First

(SJF), assigns tasks a priority depending on how long they take to process. When it comes to

which is mention in Figure 2.

of the Shortest Job Next (SJN) Scheduling in cloud

SJN prioritizes the shortest jobs first in an effort to reduce task waiting times. As a

consequence, individual activities are completed more quickly, which increases system

SJN contributes to resource optimization in the cloud environment by starting with shorter

workloads. This is especially helpful in situations where resources are deallocated and

Cloud computing systems may operate at better throughput thanks to SJN scheduling. Shorter

jobs are prioritized because they enable the system to do more tasks in a shorter amount of

50

The Performance of the Different Algorithms on Cloud Computing Environment

 d) Improved Response Time:

Short tasks are given priority by the algorithm, which makes interactive apps respond more

quickly. This is especially important for cloud services, since customer happiness is highly

dependent on user reaction.

e) Predictable Execution Times:

When it comes to the timing of work execution, SJN offers predictability. This scheduling of

tasks with known shorter durations enables more effective cloud computing resource

management and planning.

f) Efficient Utilization of Cloud Resources:

By reducing idle time and making sure that resources are continuously working on tasks, SJN

contributes to the effective use of cloud resources. This may lead to lower expenses and more

effective use of resources overall.

g) Adaptability to Dynamic Workloads:

Cloud computing infrastructures with fluctuating workloads are a good fit for SJN. Since job

durations might differ, SJN prioritizes the shortest jobs in order to dynamically adjust to the

shifting workload and maintain flexibility and responsiveness to fluctuating demand[8].

h) Fairness in Resource Allocation:

Shorter work is given priority by SJN, but it also maintains some justice by allowing longer

projects to be scheduled when shorter ones are finished. This equilibrium guarantees an

equitable allocation of resources and aids in avoiding the starving of certain activities.

To sum up, the SJN scheduling algorithm works well in cloud computing because it reduces

waiting times, maximizes resource utilization, boosts throughput, improves reaction times,

offers predictability, and effectively adjusts to workloads that change over time. All of these

advantages add to the general efficacy and efficiency of cloud-based solutions.

DISCUSSION

In the context of cloud computing, Shortest Job Next (SJN), often referred to as Shortest Job

First (SJF), is a scheduling technique that offers many benefits. Its ability to reduce wait

times for jobs is one of its main advantages. SJN dramatically lowers the turnaround time for

individual activities by giving priority to completing the smallest jobs first, improving overall

system efficiency. This is especially important in cloud settings where it is necessary to

complete tasks quickly. SJN also helps with resource efficiency by making sure that shorter

tasks are completed before larger ones. This optimization becomes essential for making the

most use of the resources that are available in cloud settings that are deallocated and

dynamically provisioned. Improved throughput, a crucial performance indicator in cloud

computing systems, is one of the efficiency advantages. Because SJN concentrates on shorter

activities, the system can do more tasks in a given amount of time, which increases

throughput overall[9]. Additionally, SJN has a good effect on reaction times, particularly in

interactive applications because it gives priority to finishing shorter tasks, which allows users

to respond to commands faster. Another benefit that comes with using SJN is that task

execution times are predictable. The method makes it easier to plan and manage cloud

computing resources by giving priority to shorter periods. SJN is known for its effective

resource usage, which reduces idle time and guarantees that resources are always being used

to complete tasks. By optimizing resource use, this not only leads to increased system

51

The Performance of the Different Algorithms on Cloud Computing Environment

 performance but may also result in cost savings. A major advantage of SJN is its flexibility in

handling changing workloads. Because work durations might differ, SJN dynamically adapts

by giving preference to the shortest jobs, providing cloud computing environments with

flexibility and reactivity to shifting demand patterns. SJN also helps to ensure equitable

resource distribution. lesser works are given priority for prompt completion, but it also

maintains some justice by allowing larger jobs to be scheduled after the lesser ones are

finished. This well-rounded strategy ensures a just and equal allocation of resources by

averting the possibility of certain tasks going hungry[10]. SJN scheduling offers many

benefits in cloud computing. Throughput, reaction times, and flexibility to changing

workloads are all improved by SJN, a strong scheduling algorithm that dramatically raises the

efficacy and efficiency of cloud-based systems. It also minimizes waiting times and

maximizes resource usage. Its beneficial effects on resource allocation fairness and

predictability reinforce its standing as an important instrument for enhancing cloud

computing systems.

CONCLUSION

The Shortest Job Next (SJN) scheduling algorithm is a very flexible and beneficial method in

the cloud computing domain. It is an invaluable tool for increasing system efficiency in

cloud-based applications because of its capacity to reduce waiting times, maximize resource

use, boost throughput, and increase response times. Because of its capacity to adjust to

changing workloads and estimate task execution durations, it makes sure that computing

resources are used as efficiently as possible, which improves the system's overall

responsiveness. Additionally, SJN's equitable resource distribution finds a balance between

giving shorter work priority for quick completion and giving longer tasks equal processing

time when shorter tasks are finished. This equilibrium promotes a more equal allocation of

resources in addition to preventing task hunger. SJN's benefits highlight the algorithm's

continued significance as a scheduling algorithm for maximizing performance,

responsiveness, and resource usage in dynamic and demanding cloud settings, even as cloud

computing continues to advance.

REFERENCES:

[1] R. Gomathi and N. Mahendran, “An efficient data packet scheduling schemes in

wireless sensor networks,” in 2nd International Conference on Electronics and

Communication Systems, ICECS 2015, 2015. doi: 10.1109/ECS.2015.7124966.

[2] Y. Du, J. L. Wang, and L. Lei, “Multi-objective scheduling of cloud manufacturing

resources through the integration of Cat swarm optimization and Firefly algorithm,”

Adv. Prod. Eng. Manag., 2019, doi: 10.14743/apem2019.3.331.

[3] C. Lei, N. Zhao, S. Ye, and X. Wu, “Memetic algorithm for solving flexible flow-shop

scheduling problems with dynamic transport waiting times,” Comput. Ind. Eng., 2020,

doi: 10.1016/j.cie.2019.07.041.

[4] N. J. Navimipour, A. M. Rahmani, A. H. Navin, and M. Hosseinzadeh, “Job

scheduling in the Expert Cloud based on genetic algorithms,” Kybernetes, 2014, doi:

10.1108/K-02-2013-0018.

[5] M. Prudhomme, “Overview 2019,” Anticancer. Agents Med. Chem., 2020, doi:

10.2174/187152062001200224141844.

[6] A. Pandey, P. Singh, N. H. Gebreegziabher, and A. Kemal, “Chronically Evaluated

Highest Instantaneous Priority Next: A Novel Algorithm for Processor Scheduling,” J.

Comput. Commun., 2016, doi: 10.4236/jcc.2016.44013.

52

The Performance of the Different Algorithms on Cloud Computing Environment

 [7] N. Tyagi, R. P. Tripathi, and A. B. Chandramouli, “Single machine scheduling model

with total tardiness problem,” Indian J. Sci. Technol., 2016, doi:

10.17485/ijst/2016/v9i37/97527.

[8] M. Thombare, R. Sukhwani, P. Shah, S. Chaudhari, and P. Raundale, “Efficient

implementation of Multilevel Feedback Queue Scheduling,” in Proceedings of the

2016 IEEE International Conference on Wireless Communications, Signal Processing

and Networking, WiSPNET 2016, 2016. doi: 10.1109/WiSPNET.2016.7566483.

[9] M. Dixon, T. Mckenna, and G. De O, “Supporting Customer Service Through the

Coronavirus Crisis,” Harv. Bus. Rev., 2020.

[10] S. Jain, V. Mishra, R. Kumar, and U. Chandra Jaiswal, “Rail road strategy for SJF

starvation problem,” in Communications in Computer and Information Science, 2011.

doi: 10.1007/978-3-642-19542-6_75.

53

The Performance of the Different Algorithms on Cloud Computing Environment

 CHAPTER 7

AN ELABORATION OF THE ADVANCEMENTS AND

CHALLENGES IN PRIORITY SCHEDULING ALGORITHMS FOR

EFFICIENT TASK MANAGEMENT IN CLOUD COMPUTING
Dr. Trapty Agarwal, Associate Professor,

Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar

Pradesh, India.

Email Id- trapty@muit.in

ABSTRACT:

The field of distributed computing, cloud computing has become a key concept, providing

scalable resources and on-demand services. In this ever-changing setting, efficient task

management is essential to maximizing resource use and raising overall system performance.

The use of priority scheduling algorithms to provide effective job management in cloud

computing settings has attracted a lot of interest. This study offers a thorough analysis of the

developments and difficulties related to priority scheduling methods. The paper explores the

applicability and consequences of different priority scheduling algorithms in a range of cloud

computing contexts, delving into their subtleties. We talk about how priority scheduling

algorithms have evolved, emphasizing the significant turning points and discoveries that have

influenced this process. We also discuss the difficulties and constraints that arise when

putting these algorithms into practice, taking into account things like cloud environment

heterogeneity, scalability, and flexibility. The influence of priority scheduling on load

balancing, resource allocation, and overall system performance are also examined in this

research. We pinpoint new directions in the field of priority scheduling algorithms for cloud

computing, as well as best practices and unexplored research areas, by critically evaluating

the body of current literature.

KEYWORDS:

Priority Scheduling Algorithms, Task Management, Efficiency, Challenges, Advancements.

INTRODUCTION

Cloud computing has become a disruptive paradigm in the quickly changing field of

information technology, changing the way computer resources are supplied, accessed, and

used. With more and more businesses moving their infrastructures to the cloud, effective task

management is becoming more and more necessary. Task scheduling is a crucial factor that

affects cloud-based systems' performance, and Priority Scheduling Algorithms are essential

for coordinating and optimizing the execution of various workloads. This talk begins with a

thorough investigation, offering a detailed analysis of the developments and difficulties

inherent in Priority Scheduling Algorithms when it comes to task management in the context

of cloud computing. The complex interactions between various computing jobs and the

dynamic cloud settings need advanced scheduling techniques to guarantee best use of

resources, increased system responsiveness, and better overall performance[1].

This investigation begins with an examination of the fundamental ideas behind Priority

Scheduling Algorithms, explaining their theoretical foundations and emphasizing their

importance within the larger framework of cloud-based task management. Scheduling

systems need to be adaptable and intelligent as computing environments grow more

complicated and varied. The goal of this part is to provide forth a theoretical framework that

will serve as the foundation for further talks on developments and difficulties. Next, the next

parts examine the latest developments in Priority Scheduling Algorithms and present the

54

The Performance of the Different Algorithms on Cloud Computing Environment

 creative approaches and technologies created to meet the changing needs of contemporary

cloud systems. This entails a thorough analysis of the algorithmic improvements, machine

learning integrations, and real-time adaptation mechanisms that support cloud-based systems'

task scheduling's scalability and efficiency.

But innovation seldom travels without hiccups, and the next sections of this talk carefully

examine the difficulties involved in putting Priority Scheduling Algorithms into practice and

deploying them in real-world cloud computing environments. Workload variability, resource

limitations, and the need for energy-efficient calculations provide complex problems that call

for sophisticated solutions. This inquiry attempts to open the path for future research and

development projects in the area by critically assessing these obstacles[2], [3].

This thorough investigation is an invaluable tool for scholars, professionals, and decision-

makers who are involved in the ever-changing field of cloud computing. Through a synthesis

of theoretical underpinnings, current developments, and enduring difficulties in Priority

Scheduling Algorithms, it aims to further the continuing conversation about effective work

management in the cloud. The knowledge gained from this investigation is well-positioned to

direct the creation of resilient and flexible scheduling policies that will influence cloud

computing in the years to come.

History of the Priority Scheduling Algorithms for Efficient Task Management in Cloud

Computing:

The development of task scheduling approaches and cloud computing is closely linked to the

history of Priority Scheduling Algorithms for Efficient Task Management in Cloud

Computing. This story takes place in the context of a journey toward transformation,

characterized by paradigm changes, technical breakthroughs, and the increasing complexity

of handling computing activities in dynamic, dispersed contexts. The need for flexible and

scalable computer resources emerged in the early 2000s, which is when cloud computing first

emerged. Cloud computing, which provides virtualized resources on a pay-as-you-go basis,

arose as a solution when businesses looked for alternatives to conventional on-premises

infrastructure.

The emergence of cloud services has led to a growing need for effective task management

systems, which has paved the way for the creation of scheduling algorithms. Initially, simple

scheduling techniques were used, often based on conventional algorithms such as Round

Robin and First-Come-First-Serve (FCFS). But as cloud infrastructures grew in size and

complexity, it became clear that these traditional approaches had limits[4]. Priority

Scheduling Algorithms were developed as a result of scholars and practitioners' exploration

of more complex scheduling techniques.

Priorities were assigned to various tasks according to predefined criteria, such as task

deadlines, resource needs, or user-defined preferences, in the early Priority Scheduling

Algorithms. By giving higher-priority jobs precedence throughout the scheduling process,

these algorithms sought to maximize the use of cloud resources. This move toward

prioritizing was a significant turning point in the development of cloud-based task

management's efficiency and responsiveness. As the subject developed, scientists started

incorporating machine learning and artificial intelligence methods into Priority Scheduling

Algorithms. Algorithms were able to adjust dynamically to changing workloads, resource

availability, and performance needs because to this injection of intelligence. Task scheduling

in cloud systems might become even more agile and adaptable with the use of machine

learning-driven algorithms that can learn from past data and make choices in real time[5], [6].

55

The Performance of the Different Algorithms on Cloud Computing Environment

 Task management in the cloud took on new dimensions with the introduction of orchestration

frameworks like Kubernetes and containerization technologies like Docker. Priority

Scheduling Algorithms have developed to use these technologies to improve resource

scalability, efficiency, and isolation by using container orchestration.

The history of Priority Scheduling Algorithms in cloud computing has been influenced by

enduring issues even in the face of significant breakthroughs. Workload heterogeneity,

competition for resources, and the need for energy-efficient calculations have created

enduring challenges. As a result of ongoing efforts by researchers and practitioners to solve

these issues, hybrid algorithms and adaptive techniques that can balance competing goals

have been developed.

In the future, the tale of Priority Scheduling Algorithms for Effective Task Management in

Cloud Computing will continue to develop. These algorithms will surely go through more

breakthroughs and adjustments as the technology landscape changes in order to satisfy the

always evolving needs of cloud-based computing environments.

The continuous discourse among scholars, professionals in the industry, and the wider

computing community guarantees that the chronicle of these algorithms continues to be a

dynamic and developing tale, hence augmenting the effectiveness and durability of cloud

computing ecosystems[7].

Algorithm of the Priority Scheduling Algorithms in Cloud Computing:

In cloud computing, priority scheduling is a popular scheduling technique whereby processes

or tasks are given a priority, and the scheduler chooses whatever job with the greatest priority

to carry out. The relevance of the work, any time restrictions, or the need for resources may

all be taken into consideration when determining the priority. The following is a basic cloud

computing priority scheduling algorithm:

A. Definition of a Task:

a) Specify the actions that must be taken in the cloud environment.

b) Give each assignment a priority rating based on variables like significance,

deadlines,or resource needs.

B. Task List:

a) Keep a backlog of jobs that need to be completed.

C. Allocation of Priority:

a) Based on the above criteria, give each task a priority rating.

b) Tasks with greater priorities are indicated by higher priority values.

D. Organizing:

a) Arrange the jobs in the task queue according to their priority.

b) At the front of the line will be the assignment with the greatest priority.

E. Check for Resource Availability:

a) Verify that the cloud environment has the necessary resources (CPU, RAM, etc.)

beforescheduling a job.

56

The Performance of the Different Algorithms on Cloud Computing Environment

 F. Work Scheduling:

a) From the sorted task queue, choose the work that has the greatest priority.

b) Verify that the tools needed for the chosen job are on hand.

G. Task Fulfillment:

a) Use the resources allotted to complete the chosen assignment.

H. Final Verification:

a) Verify that the job has been performed.

b) Take the job out of the task queue after it is finished.

I. Repeat:

a) Steps 5-8 should be repeated until every job is finished.

Priority Scheduling Algorithm in Cloud Computing:

Sample Task Definition with Priority

tasks = [

 {"task_id": 1, "priority": 3, "resources": {"CPU": 2, "Memory": 4}},

 {"task_id": 2, "priority": 1, "resources": {"CPU": 1, "Memory": 2}},

 {"task_id": 3, "priority": 2, "resources": {"CPU": 3, "Memory": 6}},

]

Sort tasks based on priority

sorted_tasks = sorted(tasks, key=lambda x: x["priority"], reverse=True)

Example of scheduling loop

for task in sorted_tasks:

 if check_resource_availability(task["resources"]):

 execute_task(task)

Different methods of performing the Priority Scheduling Algorithms in Cloud

Computing:

In order to maximize resource usage and achieve a variety of performance goals, priority

scheduling algorithms must be implemented as part of efficient task management in cloud

computing. In cloud computing, priority scheduling algorithms are implemented using

several techniques which is mention in Figure 1 and discussed below:

a) Static Priority Assignment:

When creating or deploying tasks, give each one a set priority. The priorities don't change

throughout the course of the assignment. When task priorities are predetermined and don't

change often, this approach works well[8].

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Illustrated the methods of performing the Priority Scheduling Algorithms in

b) Dynamic Priority Adjustment:

Dynamically reorder tasks according to user choices, workload factors, or changing

circumstances. Dynamic priority assignment guarantees that resources are distributed

effectively in response to real

needs.

c) Deadline-Based Prioritization:

Set priority according to the due dates of

with impending deadlines to guarantee timely completion. Applications with stringent time

limitations, such real-time systems or important batch operations, need this technique.

d) Resource-Aware Prioritiza

When determining priorities, take resource needs into account. Higher priority may be given

to tasks that need more resources or have certain limitations in order to hasten their

completion. This method aids in the effective use of resources.

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Illustrated the methods of performing the Priority Scheduling Algorithms in

Cloud Computing.

Dynamic Priority Adjustment:

Dynamically reorder tasks according to user choices, workload factors, or changing

circumstances. Dynamic priority assignment guarantees that resources are distributed

effectively in response to real-time changes and enables the system to adjust to changing

Based Prioritization:

Set priority according to the due dates of tasks. Priorities are assigned more highly to tasks

with impending deadlines to guarantee timely completion. Applications with stringent time

time systems or important batch operations, need this technique.

Aware Prioritization:

When determining priorities, take resource needs into account. Higher priority may be given

to tasks that need more resources or have certain limitations in order to hasten their

completion. This method aids in the effective use of resources.

57

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Illustrated the methods of performing the Priority Scheduling Algorithms in

Dynamically reorder tasks according to user choices, workload factors, or changing

circumstances. Dynamic priority assignment guarantees that resources are distributed

time changes and enables the system to adjust to changing

tasks. Priorities are assigned more highly to tasks

with impending deadlines to guarantee timely completion. Applications with stringent time

time systems or important batch operations, need this technique.

When determining priorities, take resource needs into account. Higher priority may be given

to tasks that need more resources or have certain limitations in order to hasten their

58

The Performance of the Different Algorithms on Cloud Computing Environment

 e) User-Defined Priorities:

Permit administrators or users to set task priority levels according to application-specific

specifications. User-defined priorities provide stakeholders freedom and customization so

they may tailor the scheduling algorithm to suit their requirements.

f) Feedback Mechanisms:

Put feedback systems in place to dynamically change priorities in response to past task

completion data. In order to ensure equitable treatment over time, tasks that encounter delays

or have longer execution durations can be assigned a greater priority in future scheduling

cycles[9], [10].

g) Multi-Level Queue Scheduling:

Assign jobs to various queues or priority levels. Every queue has its own scheduling

algorithm, and jobs are shifted between them according to their priority or dynamic

modifications. This technique offers an organized way to rank jobs according to varying

degrees of significance.

h) Preemption and Aging:

Use preemption to shift the processor's focus to higher-priority tasks while temporarily

suspending lower-priority ones. Aging mechanisms may keep low-priority jobs from starving

by gradually raising the importance of tasks that have been waiting for a long time.

i) Weighted Priority Scheduling:

To indicate the relative significance of various tasks or users, provide weight factors to them.

After that, the priority is determined by adding the specified weight to the base priority.

Priorities may be finely adjusted depending on significance using this approach.

j) Fair Share Scheduling:

Distribute resources according to fairness principles, making sure that over time, each user or

application receives a fair portion of resources. This strategy avoids resource monopolization

by a single user or job and encourages fair resource allocation.

The technique of choosing is determined by the particular needs and features of the cloud

computing environment, such as the kind of work, workload dynamics, and quality of service

goals. To strike a balance between responsiveness, justice, and resource efficiency, these

techniques are often combined.

Advantages of the Priority Scheduling Algorithms in Cloud Computing:

Cloud computing Priority Scheduling Algorithms have a number of benefits that make them

appropriate in certain situations and applications. Here are a few main benefits are

represented through the Figure 2 below:

a) Task Prioritization:

Tasks may be effectively prioritized using priority scheduling, which takes into account

predetermined parameters including job significance, deadlines, and resource needs. This

guarantees that important activities are completed first.

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 2: Illustrated the Advantages of the Priority Scheduli

b) Optimized Resource Utilization:

Optimizing resource usage in the cloud environment is the goal of the algorithm, which

chooses and performs tasks according to their priorities. Better efficiency and response to the

system's fluctuating needs follow from this.

c) Meeting Deadlines:

When tasks have deadlines attached, priority scheduling is very helpful. By giving

precedence to jobs with better possibility of fulfilling deadlines, the algorithm helps satisfy

time-sensitive needs.

d) Customization and Flexibility:

The task priority values provide a flexible and adaptable method of work scheduling. By

customizing the scheduling algorithm to the specifics of the workload, system administrators

may modify priority in accordance wit

e) Improved Quality of Service (QoS):

Importance scheduling guarantees that jobs with a high importance are given precedence,

which enhances the quality of service. This is

service standards must be maintained and resources are shared by several users and apps.

The Performance of the Different Algorithms on Cloud Computing Environment

: Illustrated the Advantages of the Priority Scheduling Algorithms in Cloud

Computing.

Optimized Resource Utilization:

Optimizing resource usage in the cloud environment is the goal of the algorithm, which

chooses and performs tasks according to their priorities. Better efficiency and response to the

s fluctuating needs follow from this.

When tasks have deadlines attached, priority scheduling is very helpful. By giving

precedence to jobs with better possibility of fulfilling deadlines, the algorithm helps satisfy

Customization and Flexibility:

The task priority values provide a flexible and adaptable method of work scheduling. By

customizing the scheduling algorithm to the specifics of the workload, system administrators

may modify priority in accordance with the demands of individual users or applications

Improved Quality of Service (QoS):

Importance scheduling guarantees that jobs with a high importance are given precedence,

which enhances the quality of service. This is essential in cloud computing settings where

service standards must be maintained and resources are shared by several users and apps.

59

The Performance of the Different Algorithms on Cloud Computing Environment

ng Algorithms in Cloud

Optimizing resource usage in the cloud environment is the goal of the algorithm, which

chooses and performs tasks according to their priorities. Better efficiency and response to the

When tasks have deadlines attached, priority scheduling is very helpful. By giving

precedence to jobs with better possibility of fulfilling deadlines, the algorithm helps satisfy

The task priority values provide a flexible and adaptable method of work scheduling. By

customizing the scheduling algorithm to the specifics of the workload, system administrators

h the demands of individual users or applications[11].

Importance scheduling guarantees that jobs with a high importance are given precedence,

essential in cloud computing settings where

service standards must be maintained and resources are shared by several users and apps.

60

The Performance of the Different Algorithms on Cloud Computing Environment

 f) Responsive to Dynamic Workloads:

The priority scheduling system is flexible enough to adjust to workload fluctuations. The

scheduler can react fast to changes in task priority or the addition of additional tasks by

changing the execution order to reflect the altered priorities.

g) Fairness and Equity:

Priority scheduling may be set up to ensure that competing jobs are treated fairly. The

algorithm makes an effort to distribute resources in a way that guarantees fair treatment for

all jobs or users by carefully choosing priority values.

h) Predictable Task Execution:

Based on the set priorities, users and programs may better understand when their tasks are

likely to be done. For applications that have certain requirements for speed or reaction time,

task execution predictability might be vital.Priority scheduling has these benefits, but it's

important to remember that the algorithm's efficiency is dependent on how priorities are

assigned correctly and the particulars of the workload in the cloud environment. To get the

best outcomes, priority values must be carefully considered and adjusted[12].

DISCUSSION

The task management landscape has undergone substantial transformation due to the ongoing

expansion of cloud computing, which calls for the use of complex scheduling algorithms in

order to maximize resource consumption and improve overall system efficiency. This talk

explores the developments and difficulties surrounding priority scheduling algorithms in the

context of cloud computing. A key element of task management is priority scheduling, which

ranks jobs according to a range of factors including significance, deadlines, and resource

needs. The use of machine learning methods to dynamically modify task priorities is one

noteworthy development that enables the system to react to shifting workload patterns and

resource availability. Furthermore, advances in predictive analytics and real-time monitoring

help make better decisions when setting priorities, which enhances output and efficient use of

resources. But this increase in complexity is not without its difficulties. One major obstacle is

the complexity of putting dynamic priority modifications into practice and maintaining them.

Another crucial difficulty is making sure that priorities are assigned fairly and avoiding

possible resource hunger for lower-priority jobs. Furthermore, security issues need careful

consideration, such as possible weaknesses in the priority assignment procedure[13], [14].

Achieving a balance between innovation and tackling these problems is crucial for the

effective integration of priority scheduling algorithms in task management as cloud

computing progresses.

CONCLUSION

The examination of the developments and difficulties faced by priority scheduling algorithms

for effective task management in cloud computing highlights the vital part these algorithms

play in maximizing resource use and improving system performance as a whole. The

amalgamation of machine learning methodologies with instantaneous monitoring signifies

auspicious progressions, providing flexible adjustment to fluctuating workloads and enhanced

capacity for making decisions. But as these algorithms become more complicated, there are

more underlying problems that must be solved. Finding a middle ground between fairness

and dynamic prioritizing, as well as addressing security issues, becomes imperative. Priority

scheduling algorithms will need to be continuously improved upon and innovative in order to

satisfy the changing needs of cloud computing. Priority scheduling algorithms must work

61

The Performance of the Different Algorithms on Cloud Computing Environment

 together with researchers, practitioners, and industry stakeholders to overcome these

obstacles and maintain their resilience, scalability, and robustness while optimizing task

management in the ever-changing cloud computing environment.

REFERENCES:

[1] N. Lavi and H. Levy, “Admit or preserve? Addressing server failures in cloud

computing task management,” Queueing Syst., 2020, doi: 10.1007/s11134-019-09624-

z.

[2] P. Kumar and R. Kumar, “Issues and challenges of load balancing techniques in cloud

computing: A survey,” ACM Comput. Surv., 2019, doi: 10.1145/3281010.

[3] A. A. Mutlag et al., “MAFC: Multi-agent fog computing model for healthcare critical

tasks management,” Sensors (Switzerland), 2020, doi: 10.3390/s20071853.

[4] S. G. Domanal, R. M. R. Guddeti, and R. Buyya, “A Hybrid Bio-Inspired Algorithm

for Scheduling and Resource Management in Cloud Environment,” IEEE Trans. Serv.

Comput., vol. 13, no. 1, pp. 3–15, Jan. 2020, doi: 10.1109/TSC.2017.2679738.

[5] L. Yin, J. Luo, and H. Luo, “Tasks Scheduling and Resource Allocation in Fog

Computing Based on Containers for Smart Manufacturing,” IEEE Trans. Ind.

Informatics, 2018, doi: 10.1109/TII.2018.2851241.

[6] K. Gai, M. Qiu, H. Zhao, and X. Sun, “Resource management in sustainable cyber-

physical systems using heterogeneous cloud computing,” IEEE Trans. Sustain.

Comput., 2018, doi: 10.1109/TSUSC.2017.2723954.

[7] W. Kadri and B. Yagoubi, “Optimized scheduling approach for scientific applications

based on clustering in cloud computing environment,” Scalable Comput., 2019, doi:

10.12694/scpe.v20i3.1548.

[8] S. Chen et al., “Internet of Things Based Smart Grids Supported by Intelligent Edge

Computing,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2920488.

[9] F. Mohammed, O. Ibrahim, M. Nilashi, and E. Alzurqa, “Cloud computing adoption

model for e-government implementation,” Inf. Dev., 2017, doi:

10.1177/0266666916656033.

[10] G. Mokhtari, A. Anvari-Moghaddam, and Q. Zhang, “A New Layered Architecture for

Future Big Data-Driven Smart Homes,” IEEE Access, vol. 7, pp. 19002–19012, 2019,

doi: 10.1109/ACCESS.2019.2896403.

[11] A. Noraziah, M. A. I. Fakherldin, K. Adam, and M. A. Majid, “Big data processing in

cloud computing environments,” Adv. Sci. Lett., 2017, doi: 10.1166/asl.2017.10227.

[12] B. Liang, X. Dong, Y. Wang, and X. Zhang, “Memory-aware resource management

algorithm for low-energy cloud data centers,” Futur. Gener. Comput. Syst., vol. 113,

pp. 329–342, Dec. 2020, doi: 10.1016/j.future.2020.07.026.

[13] A. S. A. Beegom and M. S. Rajasree, “Integer-PSO: a discrete PSO algorithm for task

scheduling in cloud computing systems,” Evol. Intell., 2019, doi: 10.1007/s12065-019-

00216-7.

[14] M. C. Silva Filho, C. C. Monteiro, P. R. M. Inácio, and M. M. Freire, “Approaches for

optimizing virtual machine placement and migration in cloud environments: A

survey,” J. Parallel Distrib. Comput., 2018, doi: 10.1016/j.jpdc.2017.08.010.

62

The Performance of the Different Algorithms on Cloud Computing Environment

 CHAPTER 8

AN ANALYSIS OF TASK MIGRATION ALGORITHMS IN CLOUD

COMPUTING AND ITS FUTURE DIRECTIONS
Dr. Trapty Agarwal, Associate Professor,

Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar

Pradesh, India.

Email Id- trapty@muit.in

ABSTRACT:

Work migration algorithms are essential for improving work distribution across cloud

settings as the need for better performance and effective resource use in cloud computing

grows. This research article offers a thorough examination of the job migration algorithms

now in use in cloud computing, emphasizing each one's advantages, disadvantages, and

performance indicators.

The research examines a number of topics, including fault tolerance, load balancing, and

energy efficiency, providing insight into how job migration solutions are developing. In

addition, this study opens the door for future research options by pointing out new trends and

difficulties in the area. This research explores future directions for task migration algorithms

by combining machine learning methods, edge computing, and dynamic workload features.

The objective of this study is to assist academics, practitioners, and decision-makers in

comprehending the crucial factors and possible paths for improving task migration in cloud

computing settings by combining ideas from the most recent literature and investigating

cutting-edge techniques.

KEYWORDS:

Cloud Computing, Edge Computing, Load Balancing, Machine Learning, Task Migration

Algorithms, Workload Adaptability.

INTRODUCTION

In the ever-changing world of cloud computing, stability, scalability, and optimum

performance are contingent upon the efficient management and distribution of resources.

Because task migration algorithms may improve system performance by spreading

computing jobs across cloud infrastructure, they are becoming more and more important as

part of resource management. In order to analyze the present situation, obstacles, and

potential directions of task migration algorithms in cloud computing, this study sets out on an

extensive investigation of this rapidly developing field.

A wide range of workloads and applications have emerged as a result of the expansion of

cloud-based services, each with its own specifications and fluctuating resource needs. In

these kinds of situations, task migration becomes critical to handling problems like fault

tolerance, underutilization of resources, and imbalanced loads. Developing intelligent task

transfer mechanisms is becoming more important as cloud computing develops[1].

In order to provide a comprehensive overview of the different job migration techniques used

in cloud computing settings, this study synthesizes the body of current research. We explore

the complexities of fault tolerance plans, energy-aware migration algorithms, and load

balancing systems, looking at their benefits and drawbacks. This study offers a basis for

understanding the state-of-the-art methods in task migration by closely examining the

existing environment. This study looks beyond the past analysis and attempts to look

forward, pointing out new patterns and possible lines of inquiry. Challenges including

63

The Performance of the Different Algorithms on Cloud Computing Environment

 machine learning integration, workload adaptability, and edge computing concerns are

becoming more and more important as the cloud ecosystem develops[2]. By offering ideas

that may help academics, practitioners, and decision-makers realize the full potential of cloud

computing environments, this debate lays the groundwork for imagining the next generation

of task migration algorithms.

History of the Task Migration Algorithms:

The invention and evolution of methods intended to maximize the distribution and

performance of computational jobs in distributed computing settings are chronicled in the

history of task migration algorithms.

In order to improve system efficiency, load balancing, and resource usage, tasks are

dynamically assigned to computer resources using task migration, also known as task

scheduling. Task migration methods have their roots in the early phases of distributed and

parallel computing. Static task assignment techniques were the main focus of early research,

but as computer systems become more complex and diverse, dynamic and adaptive work

migration algorithms became necessary.

Task migration algorithm research took up in the 1980s and 90s as distributed and parallel

computing systems proliferated. As fault tolerance, scalability, and load balancing became

critical concerns, heuristic-based algorithms and adaptive methodologies were developed.

Researchers looked at a number of tactics, including workload monitoring, feedback control

methods, and migration rules based on task execution time prediction.

Task migration algorithms saw further developments in the twenty-first century due to the

growth of cloud computing and the expanding size of distributed systems. Intelligent task

migration algorithms started to use more and more machine learning and optimization

approaches. These algorithms used predictive analytics, real-time monitoring, and historical

data to make well-informed choices on work transfer and assignment[3], [4].

 Current research was probably investigating cutting-edge ideas like edge computing,

federated learning, and decentralized task migration as of the latest knowledge update in

January 2019 to solve new issues in the quickly changing field of distributed computing. All

things considered, the history of task migration algorithms shows a persistent search for more

effective, flexible, and wise methods of scheduling tasks in distributed computing systems in

order to maximize resource use and system performance.

Algorithm of the Task Migration in Task Scheduling:

A collection of guidelines and processes called the task migration algorithm in cloud

computing is intended to effectively manage the transfer of computational jobs across

virtualized resources in a cloud architecture.

In cloud computing systems, task migration plays a critical role in performance enhancement,

resource optimization, and workload adaptation. Cloud computing task migration techniques

are characterized by many essential elements:

a) Resource Monitoring:

The algorithm usually starts by tracking how resources are being used across the cloud

architecture. This includes evaluating network bandwidth, CPU use, memory usage, and

other pertinent data.

64

The Performance of the Different Algorithms on Cloud Computing Environment

 b) Load Balancing:

One of the main goals of task migration algorithms is load balancing. By distributing the

computational load among the available resources in an equitable manner, these algorithms

seek to maximize usage and avoid resource bottlenecks.

c) Task Classification and Prioritization:

Tasks are often categorized according to their attributes and resource needs. To guarantee that

crucial workloads are given priority, several algorithms rank jobs according to user-defined

criteria, deadlines, or criticality[4].

d) Decision-Making Logic:

The decision-making logic that chooses when and where to move tasks forms the basis of the

algorithm. This may be predicated on workload forecasts, real-time resource availability

assessments, or a mix of recent and previous data.

e) Migration Policies:

Migration rules, which specify the circumstances under which a task should be relocated, are

included into algorithms. These policies take into account things like competition for

resources, deteriorating performance, and the possible advantages of migration.

f) Fault Tolerance:

Some algorithms incorporate fault tolerance methods to improve system resilience. To

maintain task execution and dependability, these processes could include moving tasks away

from malfunctioning or deteriorating resources[5].

g) Energy Efficiency:

One major issue with cloud computing is energy usage. Certain algorithms take energy

efficiency into account by accounting for server power use and optimizing task allocation to

reduce total energy consumption.

h) Adaptability and Learning:

In order to dynamically modify migration choices in response to shifting workloads and

environmental factors, modern algorithms may include machine learning or adaptive

approaches. The system's performance may be constantly enhanced over time because to its

versatility.

i) Security Considerations

When using cloud computing, security is crucial. Considering encryption, authentication, and

other security measures, task migration algorithms must guarantee the confidentiality and

integrity of data during transfer.

The design and efficacy of task migration algorithms in cloud computing are constantly

changing as scholars and industry professionals look for novel approaches to deal with issues

including fluctuating workloads, heterogeneous resource availability, and the need for

effective resource management in cloud settings[6], [7].

History of the Task Migration Algorithms in Cloud Computing:

Task migration algorithms in cloud computing have a history that shows how techniques to

improve performance, manage resource use, and adjust to shifting workloads in dynamic

cloud settings have evolved. An outline of significant developments may be seen in the

timeline below:

65

The Performance of the Different Algorithms on Cloud Computing Environment

 a) Early Cloud Computing Concepts (2000s):

Early in the new millennium, cloud computing became popular. However, as cloud

infrastructures were still in their infancy and resource supply took precedence over dynamic

work migration, task migration algorithms were not widely used at first.

b) Proliferation of Virtualization (Mid-2000s):

Cloud computing experienced a notable surge in the use of virtualization technology in the

mid-2000s. Virtual machines (VMs) have emerged as a key component that facilitates more

flexible resource distribution. Although initial efforts were concentrated on static resource

supply, the possibility of dynamic task transfer began to show signs of promise.

c) Load Balancing and Dynamic Resource Allocation (Late 2000s):

Load balancing and dynamic resource allocation In order to tackle the issues of unequal task

distribution and resource contention, scholars and professionals started investigating load

balancing algorithms and dynamic resource allocation tactics. Earlier techniques divided up

the work between available virtual machines (VMs) based on variables like CPU and

memory consumption.

d) Research on Adaptive Algorithms (2010s):

Researchers looked on adaptive algorithms that could react dynamically to changing

circumstances as cloud environments become increasingly complex. The use of machine

learning methods to forecast workload trends and make defensible task migration choices

began.

e) Focus on Energy Efficiency (2010s):

As sustainability became more and more important, several job migration algorithms started

to take energy efficiency into account. These algorithms took into consideration the power

characteristics of data centers in order to improve work allocation in order to minimize total

energy usage.

f) Hybrid and Multi-Cloud Environments (2010s):

Task migration across several cloud providers has become more difficult with the rise of

hybrid and multi-cloud architectures. In order to manage these complications, algorithms

have developed that take into account variables like as provider-specific performance

characteristics, data localization, and inter-cloud communication costs.

g) Edge and Fog Computing (2010s-2020s):

Task migration methods gained more dimensions with the emergence of edge and fog

computing. These algorithms have to take into consideration the scattered nature of computer

resources at the edge, taking latency, bandwidth limitations, and different processing

capacities into account.

h) Blockchain and Decentralized Computing (2020s):

Research and development in the 2020s concentrated on task migration in blockchain-based

and decentralized computing platforms. Through distributed ledgers, algorithms investigated

methods to distribute tasks optimally in peer-to-peer networks while preserving security and

integrity.

66

The Performance of the Different Algorithms on Cloud Computing Environment

 i) Ongoing Innovations (2020s):

According to the most recent knowledge update from January 2019, continued innovation

and research were probably tackling new issues like enhanced security measures during

migration, better fault tolerance, and the incorporation of sophisticated machine learning

methods for more precise workload forecasts[6].

Task migration algorithms in cloud computing have a history of constant innovation, driven

by the requirement for intelligent, efficient, and adaptable resource management in dynamic

computing environments as well as the growing complexity of cloud infrastructures.

Algorithms of the Task Migration Scheduling in Cloud Computing:

The scheduling of task migration is a complicated topic that includes choosing which tasks to

move among a group of computer resources and when to do so. Usually, the objective is to

maximize a performance parameter, such resource use, energy consumption, or completion

time. Here is a condensed version of the job migration scheduling method. Please be aware

that the algorithm's efficacy varies depending on the particular needs and features of the

system.

class Task:

 def __init__(self, task_id, computational_demand):

 self.task_id = task_id

 self.computational_demand = computational_demand

class Node:

 def __init__(self, node_id, capacity):

 self.node_id = node_id

 self.capacity = capacity

 self.tasks = []

def task_migration_scheduling(nodes):

 # Sort nodes based on their current utilization (ascending order)

 nodes.sort(key=lambda node: sum(task.computational_demand for task in node.tasks))

 for source_node in nodes:

 for destination_node in nodes:

 if source_node != destination_node:

 # Try migrating tasks from source to destination node

 migrate_tasks(source_node, destination_node)

def migrate_tasks(source_node, destination_node):

 # Sort tasks on the source node based on their computational demand (descending order)

 source_node.tasks.sort(key=lambda task: task.computational_demand, reverse=True)

 for task in source_node.tasks:

67

The Performance of the Different Algorithms on Cloud Computing Environment

 if destination_node.capacity >= task.computational_demand:

 # Migrate the task to the destination node

 destination_node.tasks.append(task)

 destination_node.capacity -= task.computational_demand

 # Remove the task from the source node

 source_node.tasks.remove(task)

 source_node.capacity += task.computational_demand

 print(f"Task {task.task_id} migrated from Node {source_node.node_id} to Node

{destination_node.node_id}")

 break

Example usage:

node1 = Node(node_id=1, capacity=10)

node2 = Node(node_id=2, capacity=15)

node3 = Node(node_id=3, capacity=20)

task1 = Task(task_id=1, computational_demand=5)

task2 = Task(task_id=2, computational_demand=8)

task3 = Task(task_id=3, computational_demand=6)

node1.tasks = [task1, task2]

node2.tasks = [task3]

nodes = [node1, node2, node3]

print("Initial state:")

for node in nodes:

 print(f"Node {node.node_id} - Capacity: {node.capacity}, Tasks: {[task.task_id for task in

node.tasks]}")

task_migration_scheduling(nodes)

print("\nFinal state after task migration:")

for node in nodes:

 print(f"Node {node.node_id} - Capacity: {node.capacity}, Tasks: {[task.task_id for task in

node.tasks]}")

Advantages of the Task Migration Algorithms in Cloud Computing:

Depending on the unique context and system needs, task migration methods in cloud

computing may provide a number of benefits. The following are some overall benefits of task

migration methods in cloud computing:

68

The Performance of the Different Algorithms on Cloud Computing Environment

 a) Optimized Resource Utilization:

The process of task migration aids in the distribution of the load across the various cloud

infrastructure nodes. It guarantees more effective use of computing resources, lowering the

possibility of underused or overloaded nodes[8].

b) Reduced Latency:

Task migration algorithms may assist in lowering network latency by moving jobs closer to

the information or resources they need. Applications that depend on reaction speeds, such

real-time processing or interactive services, would especially benefit from this.

c) Dynamic Power Management:

By combining tasks on a portion of nodes and shutting down the other nodes, task migration

enables dynamic power management. This lowers data center running expenses and energy

usage.

d) Resilience to Failures:

Task migration transfers tasks to nodes that are in good health in order to address node

failures or decreased performance. This guarantees continuous service availability and

improves the system's fault tolerance.

e) Adaptability to Workload Changes:

Algorithms for task transfer allow cloud systems to adjust to workload fluctuations. Tasks

may be dynamically relocated to ensure maximum efficiency and responsiveness when

resource demand varies.

f) Resource Scaling:

Task migration algorithms may aid in cost optimization in cloud computing environments by

moving jobs to nodes with more affordable operating expenses or more advantageous pricing

structures[9].

g) Effective Task Scheduling:

When used with clever work scheduling techniques, task migration algorithms provide

efficient job placement on nodes. System efficiency and resource usage are enhanced as a

consequence.

h) Better Service Level Agreements (SLA) Compliance:

By dynamically altering resource allocations to maintain targeted performance levels and

response times, task migration algorithms may help satisfy SLA requirements.

i) Real-time Adjustment:

Task migration offers flexibility and adaptability by allowing real-time modifications to the

task distribution depending on dynamic shifts in workload, priorities, and system

circumstances.

j) System-Wide Efficiency:

Task migration algorithms optimize resource utilization on a larger scale by taking into

account the overall state of the system, as opposed to concentrating just on individual nodes.

This results in an overall cloud architecture that is more balanced and efficient.

69

The Performance of the Different Algorithms on Cloud Computing Environment

 It's crucial to remember that the particulars of the workload, the cloud environment, and the

caliber of the algorithm implementation all affect how successful task migration methods are.

A successful deployment in a cloud computing environment also requires careful

consideration of possible obstacles such migration overhead, communication expenses, and

application-specific needs.

Future Directions of the Task Migration Algorithms in Cloud Computing:

Task migration algorithms in cloud computing are a topic that is always changing to take

advantage of new possibilities and obstacles. In this field, a number of potential future paths

and tendencies are apparent:

a) Dynamic Adaptation to Workload Variability:

Future algorithms need to be better able to adjust to sudden changes in the patterns of labor.

The capacity to dynamically modify task migration options based on real-time variables

becomes critical when workloads in cloud systems fluctuate.

b) Machine Learning Integration:

Using machine learning approaches to improve the processes involved in making decisions.

Algorithms may become more sophisticated in forecasting the best migration procedures

depending on particular application and workload characteristics by using historical data and

learning from previous migration experiences.

c) Energy Efficiency and Sustainability:

Task transfer algorithms may be improved even further to take sustainability and energy

efficiency into account. Future algorithms should include the important issues of minimizing

energy use and lowering the carbon footprint of cloud data centers.

d) Multi-Objective Optimization:

Taking into account many optimization goals at once, such as reducing completion times,

energy use, and resource usage. Algorithms for multi-objective optimization may provide a

more balanced solution by accounting for different competing objectives[10].

e) Edge and Fog Computing Integration:

Task migration algorithms must adjust to distributed and decentralized architectures with the

development of edge and fog computing. Since fog nodes and edge devices could be

resource-constrained, effective job migration is crucial to maximizing performance in these

settings.

f) Security and Privacy Considerations:

Robust security and privacy protections need to be included into future task transfer

algorithms. For compliance with security and privacy standards, it will be essential to

guarantee the confidentiality and integrity of moved tasks as well as secure sensitive data

during migration.

g) Hybrid and Multi-Cloud Environments:

Task migration algorithms must manage migrations across various cloud providers and on-

premises infrastructure as enterprises embrace hybrid and multi-cloud solutions. In these

situations, interoperability and compatibility issues become crucial.

70

The Performance of the Different Algorithms on Cloud Computing Environment

 h) Real-Time Monitoring and Feedback:

Including feedback loops and real-time monitoring to continually evaluate the effects of work

transfers. Algorithms should be able to quickly reverse or modify migrations depending on

performance indicators and react to changing circumstances.

i) Containerization and Orchestration Technologies:

Integration with Kubernetes and other containerization and orchestration technologies. The

containerization of applications may help task migration algorithms by facilitating more

effective and smooth migrations inside containerized environments.

j) Collaborative and Cooperative Migration:

Creating algorithms that facilitate cooperative and collaborative task shifting. In order to

maximize resource use overall, coordination between various cloud organizations and data

centers is required.

DISCUSSION

The task migration algorithm analysis in cloud computing is a critical study of the processes

used to move computational jobs from one cloud infrastructure node to another. The

increasing importance of cloud computing in contemporary computing settings necessitates

the need for effective task migration in order to maximize resource use, load balancing, and

overall system performance. This talk explores the current state of the art task migration

algorithms, examining their advantages, disadvantages, and suitability for different cloud

environments. It investigates the effects of different algorithms on variables including

reaction time, energy use, and overall system stability[11], [12]. The conversation also

explores how cloud computing is changing and suggests possible future routes for work

transfer algorithms. Advances in cloud computing that meet shifting resource dynamics, user

requirements, and technical landscapes are made possible by anticipating and addressing new

difficulties that arise with the introduction of developing technologies. This study offers

insights that may direct future research and development in this important area, advancing

our knowledge of the state-of-the-art in task migration algorithms.

CONCLUSION

The examination of task migration algorithms in cloud computing presents a thorough picture

of the existing state of affairs and yields insightful knowledge about the potential and

difficulties present in this rapidly evolving industry. Analysis of current methods has shown

how different they are in handling important issues like load balance, resource use, and

system performance. The requirement for effective task transfer grows as the market for

cloud services continues to expand and diversify. Prospects for innovation in this field are

bright, thanks to developments in distributed systems, machine learning, edge computing, and

other cutting-edge technologies. In order to adapt to shifting workloads, user needs, and

technology paradigms, task migration solutions must be continuously improved as cloud

computing continues to develop. Subsequent studies need to concentrate on creating

adaptable algorithms that can react to changing conditions on their own, improve energy

economy, and guarantee smooth scaling. The topic of task migration algorithms has a great

opportunity to further optimize and enhance cloud computing infrastructures by keeping

abreast of these new trends and problems. The knowledge gathered from this study will be a

useful starting point for academics, developers, and practitioners as we traverse the rapidly

changing field of computing technologies and strive towards the next generation of reliable

and efficient cloud systems.

71

The Performance of the Different Algorithms on Cloud Computing Environment

 REFERENCES:

[1] Y. Miao, G. Wu, M. Li, A. Ghoneim, M. Al-Rakhami, and M. S. Hossain, “Intelligent

task prediction and computation offloading based on mobile-edge cloud computing,”

Futur. Gener. Comput. Syst., 2020, doi: 10.1016/j.future.2019.09.035.

[2] S. B. Akintoye and A. Bagula, “Improving quality-of-service in cloud/fog computing

through efficient resource allocation,” Sensors (Switzerland), 2019, doi:

10.3390/s19061267.

[3] D. Wang, Z. Liu, X. Wang, and Y. Lan, “Mobility-Aware Task Offloading and

Migration Schemes in Fog Computing Networks,” IEEE Access, 2019, doi:

10.1109/ACCESS.2019.2908263.

[4] M. Gamal, R. Rizk, H. Mahdi, and B. E. Elnaghi, “Osmotic Bio-Inspired Load

Balancing Algorithm in Cloud Computing,” IEEE Access, 2019, doi:

10.1109/ACCESS.2019.2907615.

[5] C. Zhang and Z. Zheng, “Task migration for mobile edge computing using deep

reinforcement learning,” Futur. Gener. Comput. Syst., 2019, doi:

10.1016/j.future.2019.01.059.

[6] S. Potluri and K. S. Rao, “Optimization model for QoS based task scheduling in cloud

computing environment,” Indones. J. Electr. Eng. Comput. Sci., 2020, doi:

10.11591/ijeecs.v18.i2.pp1081-1088.

[7] Z. Tong, H. Chen, X. Deng, K. Li, and K. Li, “A novel task scheduling scheme in a

cloud computing environment using hybrid biogeography-based optimization,” Soft

Comput., 2019, doi: 10.1007/s00500-018-3657-0.

[8] L. Gu, J. Cai, D. Zeng, Y. Zhang, H. Jin, and W. Dai, “Energy efficient task allocation

and energy scheduling in green energy powered edge computing,” Futur. Gener.

Comput. Syst., 2019, doi: 10.1016/j.future.2018.12.062.

[9] X. Li, Y. Qin, H. Zhou, D. Chen, S. Yang, and Z. Zhang, “An Intelligent Adaptive

Algorithm for Servers Balancing and Tasks Scheduling over Mobile Fog Computing

Networks,” Wirel. Commun. Mob. Comput., 2020, doi: 10.1155/2020/8863865.

[10] M. Junaid, A. Sohail, A. Ahmed, A. Baz, I. A. Khan, and H. Alhakami, “A Hybrid

Model for Load Balancing in Cloud Using File Type Formatting,” IEEE Access, 2020,

doi: 10.1109/ACCESS.2020.3003825.

[11] C. Li, J. Zhang, T. Ma, H. Tang, L. Zhang, and Y. Luo, “Data locality optimization

based on data migration and hotspots prediction in geo-distributed cloud

environment,” Knowledge-Based Syst., 2019, doi: 10.1016/j.knosys.2018.12.002.

[12] N. Gobalakrishnan and C. Arun, “A new multi-objective optimal programming model

for task scheduling using genetic gray Wolf optimization in cloud computing,”

Comput. J., 2018, doi: 10.1093/comjnl/bxy009.

72

The Performance of the Different Algorithms on Cloud Computing Environment

 CHAPTER 9

EXPLORING THE FRONTIERS OF ANT COLONY

OPTIMIZATION IN CLOUD COMPUTING
Dr. Trapty Agarwal, Associate Professor,

Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar

Pradesh, India.

Email Id- trapty@muit.in

ABSTRACT:

An effective technique inspired by nature for resolving challenging optimization issues is

called Ant Colony Optimization (ACO). Its use in the field of cloud computing has attracted a

lot of interest lately, signaling the fusion of cutting-edge technology paradigms with

computing inspired by nature. This study explores "the Frontiers of Ant Colony Optimization

in Cloud Computing," offering an in-depth analysis of the most recent ACO methods

designed to handle problems unique to cloud computing settings. The abstract delves into a

number of topics, such as algorithmic developments, real-world applications, and the

convergence of ACO and cloud computing. It also highlights important contributions, points

out new trends, and recommends possible directions for further study, making it an

invaluable tool for scholars, professionals, and enthusiasts working in the field of

optimization and cloud computing.

KEYWORDS:

Adaptability, Ant Colony Optimization, Cloud Computing, Dynamic Optimization, Resource

Allocation, Scalability.

INTRODUCTION

In the field of optimization algorithms, techniques derived from nature have become well-

known for their capacity to solve challenging issues in a variety of fields. Of these, Ant

Colony Optimization (ACO) is a particularly effective heuristic algorithm that finds ideal

solutions by emulating ant foraging behavior. When ACO was first used to solve

combinatorial optimization issues, it was found to be very flexible and effective, which

prompted its investigation into other domains. Cloud computing is one such area in which

ACO has just established a name for itself.The dynamic and scalable nature of cloud

computing presents particular optimization issues.

The incorporation of advanced optimization approaches has been driven by the need to

effectively allocate resources, improve job scheduling, and reduce energy usage. Among

these techniques, ACO stands out as a strong contender[1]. The combination of ACO and

cloud computing not only illustrates the multidisciplinary character of contemporary

research, but it also creates new opportunities for tackling the complexities of cloud systems.

The purpose of this work is to explore the complexities and possibilities contained in the

relationship between cloud computing and ant colony optimization. Under the heading "Ant

Colony Optimization in Cloud Computing," a thorough examination of how ACO algorithms

may be customized to satisfy the unique requirements and complexities of cloud-based

infrastructures is provided.The trip starts with an introduction to Ant Colony Optimization,

exploring its basic ideas and the workings that make it such a powerful optimization tool.

Then, we go on to the special difficulties that Cloud Computing poses and the justification for

using algorithms that are inspired by nature to solve them. In-depth analysis is done on the

73

The Performance of the Different Algorithms on Cloud Computing Environment

 connections between ACO and cloud-related optimization issues, emphasizing ACO's

adaptability in terms of job scheduling, resource allocation, and other relevant areas[2].

The report also highlights noteworthy research and use cases where ACO has proven

effective in improving cloud-based system performance and efficiency. Through an extensive

review of the literature, this study aims to bring together the many strategies and techniques

used to adjust ACO to the changing cloud computing environment. It wants to uncover the

fundamental ideas that underpin the effectiveness of this synergy as we negotiate Ant Colony

Optimization's integration with Cloud Computing and investigate future directions for study

and development.

The importance of this multidisciplinary investigation is highlighted by the long-term effects

and scalability of ACO in tackling the changing issues of Cloud Computing[3]. In the end,

this study hopes to further our knowledge of optimization strategies in cloud systems by

offering perspectives that not only represent the status of the field today but also point to

bright futures.

History of the Ant Colony Optimization in Cloud Computing:

The narrative of Ant Colony Optimization (ACO) in cloud computing chronicles an

engrossing voyage of creativity, adjustment, and the search for effective answers in the

dynamic field of cloud-based systems. Originally created as an algorithm for combinatorial

optimization problems inspired by nature, ACO quickly rose to prominence in research

projects aimed at tackling the complex difficulties associated with cloud computing. The

origins of ACO may be found in the groundbreaking research done by Marco Dorigo and his

colleagues, who developed an optimization algorithm that could identify the best pathways in

graphs by taking their cues from the foraging habits of ants. As ACO developed and proved

effective across a range of areas, scientists started to see how well it might work in the

dynamic and resource-intensive world of cloud computing. Initially, resource allocation and

task scheduling were the main areas of interest for adapting ACO for cloud settings. These

are two important factors that affect how well cloud-based infrastructures work. In order to

meet the demands of optimum resource usage and the dynamic nature of cloud workloads,

researchers looked at methods to improve the algorithm's flexibility[4].

Studies and applications pertaining to ACO in cloud computing have proliferated over time.

Research projects now include a wide range of topics, including cost minimization, energy

efficiency, and load balancing in cloud systems.

The algorithm's capacity for self-optimization and conditional adaptation fits in well with the

constraints imposed by the elastic and scalable nature of cloud services. ACO's efficacy in

tackling practical issues has been substantiated by a plethora of research contributions,

highlighting its potential to transform cloud resource management tactics.

The investigation of ACO's potential is progressing along with cloud technology, with a

growing focus on hybrid and collaborative optimization techniques. Ant Colony

Optimization's history in cloud computing is evidence of the continuous search for clever and

flexible solutions in the face of rapidly changing technical environments. Originally

developed as a combinatorial algorithm inspired by nature, ACO has evolved into a useful

tool for maximizing the sustainability, scalability, and efficiency of cloud-based systems[5].

Looking back at its past, the path that ACO has taken in the field of cloud computing is

evidence of the mutually beneficial link that exists between cutting-edge technical paradigms

and computing inspired by nature.

74

The Performance of the Different Algorithms on Cloud Computing Environment

 Algorithm of the Ant Colony Optimization in Cloud Computing:

Based on ants' foraging behavior, Ant Colony Optimization (ACO) is an optimization

technique inspired by nature. Marco Dorigo first presented it in the early 1990s. ACO is often

used to discover the best solution from a limited number of potential solutions in

combinatorial optimization situations. For issues like the traveling salesman problem and the

work scheduling problem, the method is especially well-suited. A high-level summary of the

ACO algorithm is provided below:

1. Initialization:

a) Set the pheromone levels to zero on every edge inside the solution space.

Pheromones point the ants in the direction of locations that show promise and

indicate the quality of a solution.

b) Initialize other variables at your discretion, such as the ant population, pheromone

evaporation rate, exploration factor, etc.

2. Ant Movement:

Every ant begins in the solution space at a random location or solution.

a) Even if the ant hasn't created a comprehensive solution:

b) Based on a combination of pheromone levels and a heuristic function (knowledge

related to the issue), choose the next element of the solution.

c) Proceed to the chosen component of the solution and keep going until the whole

solution is built[6].

3. Pheromone Update:

After all ants have constructed solutions:

a) To simulate the pheromones' natural deterioration over time, evaporate a portion of

the pheromone on all edges.

b) Pheromone is added to the borders of the solutions the ants produce; the quantity

added is based on the quality of the solution (longer solutions are deposited with

more pheromone).

4. Termination Criteria:

Verify if a termination requirement has been satisfied (such as a maximum number of

iterations or the discovery of a workable solution).

5. Optimal Solution:

Choose the best answer the ants came up with throughout the iterations.

6. Update Heuristic Information (Optional):

a) The heuristic data that ants use to direct their travels may sometimes be modified in

response to the caliber of the solutions discovered.

b) The fundamental tenet of ACO is that additional ants are directed to explore and

effectively use the solution space by the pheromone trail established by prosperous

ants. The method tends to converge toward near-optimal or ideal solutions over time.

The Performance of the Different Algorithms on Cloud Computing Environment

Pheromone levels and heuristic data work together to create a balance between

distributed aspect of ACO's algorithm is intrinsic, reflecting the decentralized

structure of cloud computing environments. Because of this, it is a good fit for solving

optimization problems on cloud platforms where jobs must be dispersed across many

resources.

a) Dynamic Adaptability:

Dynamic variations in workload, resource availability, and network circumstances are

common in cloud systems. The dynamic adaptation of ACO is advantag

where the optimization algorithm must react to changes in demand or resource

malfunctions[7].

Figure 1: Illustrated the a

b) Optimization of Resource Allocation:

In a cloud architecture, the optimal placement of virtual machines (VMs) or containers on

physical servers may be achieved by using ACO. ACO can provide nearly

for resource allocation issues by taking into account variables like reaction time, energy

usage, and resource use.

The Performance of the Different Algorithms on Cloud Computing Environment

one levels and heuristic data work together to create a balance between

distributed aspect of ACO's algorithm is intrinsic, reflecting the decentralized

structure of cloud computing environments. Because of this, it is a good fit for solving

on problems on cloud platforms where jobs must be dispersed across many

Dynamic Adaptability:

Dynamic variations in workload, resource availability, and network circumstances are

common in cloud systems. The dynamic adaptation of ACO is advantag

where the optimization algorithm must react to changes in demand or resource

Figure 1: Illustrated the advantage of the Ant Colony Optimization.

Optimization of Resource Allocation:

In a cloud architecture, the optimal placement of virtual machines (VMs) or containers on

physical servers may be achieved by using ACO. ACO can provide nearly

for resource allocation issues by taking into account variables like reaction time, energy

75

The Performance of the Different Algorithms on Cloud Computing Environment

 one levels and heuristic data work together to create a balance between The

distributed aspect of ACO's algorithm is intrinsic, reflecting the decentralized

structure of cloud computing environments. Because of this, it is a good fit for solving

on problems on cloud platforms where jobs must be dispersed across many

Dynamic variations in workload, resource availability, and network circumstances are

common in cloud systems. The dynamic adaptation of ACO is advantageous in situations

where the optimization algorithm must react to changes in demand or resource

dvantage of the Ant Colony Optimization.

In a cloud architecture, the optimal placement of virtual machines (VMs) or containers on

physical servers may be achieved by using ACO. ACO can provide nearly-optimal solutions

for resource allocation issues by taking into account variables like reaction time, energy

76

The Performance of the Different Algorithms on Cloud Computing Environment

 c) Load Balancing:

In cloud systems, ACO may aid in efficient load balancing. Through the optimization of task

or workload distribution over numerous servers, ACO lowers response times, prevents

resource bottlenecks, and improves the overall performance of the cloud system.

d) Task Scheduling:

In cloud computing, task scheduling entails allocating jobs to suitable resources in order to

achieve performance goals. ACO takes into account variables including task dependencies,

execution time, and resource limits to help discover optimum or nearly optimal scheduling

solutions.

e) Energy Efficiency:

The energy consumption of cloud data centers is substantial. During times of low demand,

ACO may be used to enhance the energy efficiency of the cloud infrastructure by shutting

down idle servers and concentrating virtual machines (VMs) on a subset of servers.

f) Scalability:

Because of its scalability, ACO is appropriate for large-scale cloud infrastructures with a high

volume of activities and resources. ACO can still provide efficient solutions when the scale

of the optimization issue increases, without causing a large rise in computer complexity.

g) Parallelism:

Cloud environments make extensive use of distributed and parallel computing. Because

ACOs are inherently parallel, they may be implemented on cloud platforms with efficiency,

using the parallel processing power at hand to expedite the optimization process [8].

h) Self-Adaptation and Self-Organization:

ACO has self-organization and self-adaptation traits, which are in line with the self-managing

qualities that are ideal for cloud computing. By enabling autonomous optimization, resource

management activities need less human involvement.

The use of Ant Colony Optimization in cloud computing can result in better load balancing,

more effective resource utilization, and efficient task scheduling, all of which can improve

overall system reliability, lower operating costs, and improve performance in dynamic, large-

scale cloud environments.

Future DirectionsAnt Colony Optimization in Cloud Computing:

Future research and development initiatives seek to improve Ant Colony Optimization's

(ACO) applicability, scalability, and adaptation to new trends and issues in cloud settings,

even though ACO has shown promise in tackling optimization challenges in cloud

computing. Here are a few possible paths that ACO in cloud computing may go in the future:

a) Hybridization with Other Techniques:

Future studies could look at hybrid strategies that combine ACO with other optimization

methodologies like machine learning or genetic algorithms.

By combining the advantages of many techniques, this hybridization may increase

convergence speed and solution quality.

77

The Performance of the Different Algorithms on Cloud Computing Environment

 b) Dynamic and Adaptive Algorithms:

Cloud environments are dynamic, optimization algorithms must be able to instantly adjust to

changing situations. In order to successfully adjust to changing workloads and resource

availability, future study may concentrate on creating ACO variants with dynamic pheromone

update processes and adaptive exploration-exploitation techniques.

c) Multi-Objective Optimization:

Cloud optimization issues can entail a number of competing goals, including cost reduction,

resource optimization, and energy conservation. In the future, ACO may be expanded to

handle multi-objective optimization issues, offering solutions that strike a balance between

many factors[9], [10].

d) Edge and Fog Computing Integration:

Future studies may examine how ACO might be modified to maximize resource allocation

and job scheduling in decentralized and distributed edge computing settings as edge and fog

computing gain traction. This entails tackling issues with latency, bandwidth limitations, and

edge device heterogeneity.

e) Security and Privacy Considerations:

Privacy and security issues are very important when using cloud computing. Future

developments for ACO may include adding security-related features like safe work

distribution and safeguarding private information while optimization procedures are

underway.

f) Quantum-Inspired ACO:

Since quantum computing is a new topic, it's possible that future studies may look at

incorporating quantum-inspired computing methods into ACO. Compared to traditional

ACO, quantum-inspired ACO algorithms may have benefits in addressing complicated

optimization problems more quickly.

g) Explainable and Interpretable Optimization:

Explainability and interpretability become crucial when optimization algorithms are used in

crucial decision-making processes. In order to improve the comprehension of the

optimization outcomes for human users, future research on ACOs may concentrate on

creating algorithms that provide precise insights into the decision-making process.

h) Scalability to Large-Scale Cloud Infrastructures:

Cloud environments are becoming bigger and bigger, handling more and more jobs and

resources. Future advancements in ACO could focus on scalability improvements to

effectively handle large-scale optimization issues, making it appropriate for the constantly

growing cloud infrastructures.

i) Real-Time Monitoring and Feedback:

By including feedback and real-time monitoring methods, ACO algorithms can better adjust

to changing circumstances. Future research may examine how ACO might use real-time data

to schedule tasks and allocate resources in a way that constantly improves decision-making.

78

The Performance of the Different Algorithms on Cloud Computing Environment

 j) Benchmarking and Standardization:

To compare various algorithms, it will be essential to establish benchmarks and standardize

assessment measures for ACO in the context of cloud optimization. In order to enable

equitable comparisons and progress in the subject, future research may concentrate on

developing standardized testbeds and assessment standards[11], [12].

The prospects for Ant Colony Optimization in Cloud Computing are anticipated to include

progressions in flexibility, assimilation with novel technologies, expandability, and resolution

of particular obstacles presented by intricate and ever-changing cloud settings.

Scholars and industry professionals will persist in investigating novel methodologies to

maximize resource allocation and augment the comprehensive effectiveness of cloud

computing infrastructures.

DISCUSSION

Exploring the frontiers of Ant Colony Optimization in Cloud Computing summarizes a

research project that explores the state-of-the-art uses and developments of ACO in the ever-

changing cloud environment.

This investigation aims to expand the capabilities of ACO in response to the growing need

for effective resource allocation, job scheduling, and overall optimization in cloud

computing. Novel approaches that allow ACO algorithms to handle multi-objective

optimization problems, dynamically adapt to changing situations, and seamlessly interact

with new paradigms like edge and fog computing are expected to be the subject of future

research.

Additionally, the investigation can concentrate on improving ACO's scalability to

accommodate cloud infrastructures that are becoming ever larger. Exploring the potential for

expedited solutions to challenging optimization problems may include examining the junction

of ACO and quantum-inspired computing.

The study may also focus on creating ACO algorithms that are understandable and

comprehensible in order to guarantee decision-making processes are transparent[13], [14].

Through this exploration of these frontiers, researchers hope to find novel approaches to the

changing needs and intricacies of cloud computing, which will eventually improve the

effectiveness and efficiency of cloud-based systems.

CONCLUSION

In conclusion, the exploration of the frontiers of Ant Colony Optimization (ACO) in Cloud

Computing represents a forward-looking and dynamic research endeavor aimed at advancing

the capabilities of optimization algorithms in the rapidly evolving cloud landscape. As cloud

environments continue to scale and diversify, the need for intelligent, adaptive, and scalable

optimization techniques becomes paramount.

The exploration of ACO's frontiers involves delving into areas such as dynamic adaptation,

multi-objective optimization, integration with emerging technologies like edge and fog

computing, and scalability to meet the challenges posed by large-scale cloud infrastructures.

The potential intersection of ACO with quantum-inspired computing adds an exciting

dimension to the exploration, promising faster and more efficient solutions to complex

optimization problems. Furthermore, a focus on explainability and transparency ensures that

ACO algorithms are not only powerful but also understandable and interpretable. By pushing

79

The Performance of the Different Algorithms on Cloud Computing Environment

 these frontiers, researchers aspire to contribute innovative solutions that address the ever-

evolving demands of cloud computing, ultimately paving the way for more efficient,

adaptive, and intelligent cloud-based systems. This exploration not only enriches the field of

optimization but also holds the promise of shaping the future of cloud computing.

REFERENCES:

[1] X. Wei, “Task scheduling optimization strategy using improved ant colony

optimization algorithm in cloud computing,” J. Ambient Intell. Humaniz. Comput.,

2020, doi: 10.1007/s12652-020-02614-7.

[2] C. Yadav and Y. K. Gupta, “Cost effective ant colony optimization in cloud

computing,” Int. J. Innov. Technol. Explor. Eng., 2019, doi:

10.35940/ijitee.J9460.0881019.

[3] G. R. N. Reddy and S. Phanikumar, “Multi objective task scheduling using modified

ant colony optimization in cloud computing,” Int. J. Intell. Eng. Syst., 2018, doi:

10.22266/IJIES2018.0630.26.

[4] Y. J. Moon, H. C. Yu, J. M. Gil, and J. B. Lim, “A slave ants based ant colony

optimization algorithm for task scheduling in cloud computing environments,”

Human-centric Comput. Inf. Sci., 2017, doi: 10.1186/s13673-017-0109-2.

[5] T. Zaidi and P. Gupta, “Traveling salesman problem with ant colony optimization

algorithm for cloud computing environment,” Int. J. Grid Distrib. Comput., 2018, doi:

10.14257/ijgdc.2018.11.8.02.

[6] R. Gao and J. Wu, “Dynamic load balancing strategy for cloud computing with ant

colony optimization,” Futur. Internet, 2015, doi: 10.3390/fi7040465.

[7] S. Khan and N. Sharama, “Effective Scheduling Algorithm for Load balancing

(SALB) using Ant Colony Optimization in Cloud Computing,” Int. J. Adv. Res.

Comput. Sci. Softw. Eng., 2014.

[8] A. Ragmani, A. Elomri, N. Abghour, K. Moussaid, and M. Rida, “FACO: a hybrid

fuzzy ant colony optimization algorithm for virtual machine scheduling in high-

performance cloud computing,” J. Ambient Intell. Humaniz. Comput., 2020, doi:

10.1007/s12652-019-01631-5.

[9] Q. Yu, L. Chen, B. Li, and J. Li, “Ant colony optimization applied to web service

compositions in cloud computing,” Comput. Electr. Eng., 2015, doi:

10.1016/j.compeleceng.2014.12.004.

[10] L. Zuo, L. Shu, S. Dong, C. Zhu, and T. Hara, “A multi-objective optimization

scheduling method based on the ant colony algorithm in cloud computing,” IEEE

Access, 2015, doi: 10.1109/ACCESS.2015.2508940.

[11] R. Achary, V. Vityanathan, P. Raj, and S. Nagarajan, “Dynamic job scheduling using

ant colony optimization for mobile cloud computing,” Adv. Intell. Syst. Comput.,

2015, doi: 10.1007/978-3-319-11227-5_7.

[12] X. Song, L. Gao, and J. Wang, “Job scheduling based on ant colony optimization in

cloud computing,” in 2011 International Conference on Computer Science and Service

System, CSSS 2011 - Proceedings, 2011. doi: 10.1109/CSSS.2011.5972226.

80

The Performance of the Different Algorithms on Cloud Computing Environment

 [13] “Load Balancing in Cloud Computing by Ant Colony Optimization Method,” Int. J.

Recent Trends Eng. Res., 2018, doi: 10.23883/ijrter.2018.4101.ss6y8.

[14] M. Gamal, R. Rizk, H. Mahdi, and B. E. Elnaghi, “Osmotic Bio-Inspired Load

Balancing Algorithm in Cloud Computing,” IEEE Access, 2019, doi:

10.1109/ACCESS.2019.2907615.

81

The Performance of the Different Algorithms on Cloud Computing Environment

 CHAPTER 10

A COMPREHENSIVE ANALYSIS OF GENETIC ALGORITHMS

IN CLOUD COMPUTING AND PROBLEM SOLVING
Girija Shankar Sahoo, Assistant Professor,

Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar

Pradesh, India.

Email Id- girija@muit.in

ABSTRACT:

The use and efficacy of genetic algorithms (GAs) in the fields of optimization and problem

solving are thoroughly examined in this research. Inspired by the concepts of genetics and

natural selection, genetic algorithms have become well-known as effective optimization

methods in many domains. The research explores the methods and genetic operators that

propel the evolution process as it digs into the fundamental ideas of GAs. A comprehensive

literature analysis is carried out to demonstrate the wide variety of situations that GAs have

been used to, demonstrating their flexibility and versatility. Along with discussing important

factors affecting GA performance, the study offers suggestions for fine-tuning techniques.

Furthermore, a comprehensive understanding of the advantages and disadvantages of genetic

algorithms may be gained by comparing them to other optimization approaches. Empirical

research and real-world implementations demonstrate the pragmatic effectiveness of genetic

algorithms in resolving intricate optimization issues. The results add to our knowledge of the

possibilities and difficulties of genetic algorithms and provide insightful information for

practitioners, academics, and decision-makers looking for effective ways to solve

optimization and problem-solving problems.

KEYWORDS:

Cloud Computing, Genetic Algorithms, Optimization, Problem Solving, Resource Allocation,

Scalability.

INTRODUCTION

Genetic algorithms (GAs), which take their cues from natural selection and genetics, have

become a powerful and adaptable tool in the continuously changing field of optimization and

problem-solving techniques. In order to provide a thorough examination of the use and

effectiveness of genetic algorithms in the fields of optimization and problem-solving, this

article sets off on a voyage of investigation and inspection. A type of evolutionary algorithms

known as genetic algorithms mimics natural selection in order to develop answers to

challenging issues. Because of their ability to accurately replicate the processes of natural

evolution, they are especially well-suited to handle a wide range of optimization problems

that arise in industries spanning from artificial intelligence and finance to engineering and

beyond.The paper starts by explaining the basic ideas behind genetic algorithms, exploring

their inner workings, and clarifying the genetic operators in charge of the repeated evolution

process[1]. The goal of the study is to provide readers a comprehensive grasp of the inner

workings of genetic algorithms (GAs) by dissecting the complexities of crossover, mutation,

and selection. A thorough analysis of the body of literature demonstrates the wide range of

problem domains in which genetic algorithms have been effectively implemented,

demonstrating their versatility and effectiveness across a multitude of academic fields.

As the investigation progresses, focus is placed on the important factors that control genetic

algorithms' performance. The objective of the research is to clarify the elements that lead to

the success or difficulties encountered by GAs in various situations by analyzing the effects

82

The Performance of the Different Algorithms on Cloud Computing Environment

 of population size, mutation rates, and selection procedures, among other things.

Comparative analyses with other optimization methods provide insightful information that

allows for a critical assessment of the advantages and disadvantages of genetic

algorithms.The study incorporates case studies and real-world applications that demonstrate

the concrete influence of genetic algorithms on challenging problem-solving situations in

order to better ground the debate in practical relevance[2]. These real-world examples not

only support the theoretical foundations but also highlight how flexible GAs are in addressing

complex optimization problems in a variety of sectors. By combining these results, the paper

hopes to provide a thorough resource that transcends theoretical discussion and gives

researchers, practitioners, and decision-makers practical understanding of the opportunities

and difficulties that come with using genetic algorithms in optimization and problem-solving

settings.

History of the Genetic Algorithms in Optimization:

Genetic algorithms (GAs) have a fascinating history in optimization, spanning many decades

with groundbreaking discoveries and a slow progression in theory and practice. Genetic

algorithms have their origins in the early 1960s, when artificial intelligence was only being

started. Many people consider John Holland, an American computer scientist and electrical

engineer, to be the father of genetic algorithms. Holland's groundbreaking work "Outline of a

Logical Theory of Adaptive Systems," published in 1962, established the idea of adaptation

in computer systems. Holland's seminal work proposed a computer model influenced by

natural selection and genetics, laying the foundation for genetic algorithms. He imagined a

population of possible answers to an issue, similar to the genetic code, where each option was

represented as a series of binary digits. He enabled these strings to develop over many

generations via processes including crossover (inspired by genetic recombination) and

mutation, with the most suitable solutions surviving and multiplying[3].

The idea of genetic algorithms became even more popular in the 1970s as Holland, his

students, and others worked to improve and develop the original framework. Holland's

foundational paper "Adaptation in Natural and Artificial Systems," which originated the

phrase "genetic algorithm" and established the cornerstone of genetic algorithms, was

published in 1975. The book offered a thorough investigation of the workings of genetic

algorithms, highlighting their potential to resolve challenging optimization issues. In the

years that followed, experts from a variety of fields became more interested in genetic

algorithms as they realized how well they could solve a broad range of optimization

problems. Genetic algorithms were first employed to solve combinatorial optimization issues,

where they proved to be effective in exploring solution spaces and locating close to ideal

solutions.

The area of genetic algorithms saw tremendous development and diversity in the 1980s and

1990s. By expanding the use of GAs to continuous optimization issues, researchers were able

to apply them to a wider range of fields, including operations research, finance, and

engineering. Genetic algorithms emerged as the leading optimization approaches as computer

power increased and more complicated problems could be handled. As a result of a period of

integration and consolidation around the turn of the century, genetic algorithms became a

mainstay in the optimization toolbox. To take advantage of the advantages of each,

researchers created hybrid systems that combined genetic algorithms with other optimization

strategies. The advent of metaheuristic algorithms, of which genetic algorithms are a famous

example, signified a paradigm change in problem-solving approaches, stressing flexibility

and adaptability over rigid algorithmic frameworks. Genetic algorithms have been a thriving

and busy field of study in recent years. Their use has spread to include hyperparameter

83

The Performance of the Different Algorithms on Cloud Computing Environment

 tuning, machine learning, and complicated system optimization, enhancing their reputation as

a flexible and powerful optimization tool[4], [5]. The constant search for effective and

scalable answers to challenging optimization problems in a quickly developing technological

environment is reflected in the continued progress of genetic algorithms.

Algorithm of the Genetic Algorithms in Cloud Computing:

Natural selection serves as the inspiration for Genetic Algorithms (GAs), which are

optimization algorithms. They are used in the approximate solution of search and

optimization issues. An overview of the Genetic Algorithm is provided below:

1. Initialization:

a) Generate an initial population of potential solutions (chromosomes).

b) Encode each solution as a chromosome of genes.

2. Evaluation:

a) Analyze each chromosome's fitness within the population.

b) The problem-solving effectiveness of a solution is gauged by the fitness function.

3. Selection:

a) To establish a mating pool, choose certain members of the existing population.

b) Each person's fitness level determines the likelihood of selection (greater fitness,

higher possibility of selection).

c) Rank-based, tournament, and roulette wheel selection are examples of popular

selection techniques.

4. Crossover (Recombination):

a) To produce children, pair members of the mating pool and execute crossover.

b) To create new child chromosomes, crossover entails merging or exchanging

specific regions of two parent chromosomes.

c) One-point, two-point, and uniform crossover are examples of common crossover

techniques.

5. Mutation:

a) Make haphazard modifications to a few of the offspring's genes.

b) The population's genetic variety is preserved in part via mutation.

c) Mutation procedures that are often performed include bit flipping, numeric value

changes, and gene swapping.

6. Replacement:

a) Replace the current population of offspring with the previous one.

b) Some tactics include elitism, in which the most exceptional members of the present

population are retained for the next generation.

84

The Performance of the Different Algorithms on Cloud Computing Environment

 7. Termination:

a) Verify if a termination requirement has been satisfied (such as a maximum number

of generations or a sufficient level of fitness).

b) The algorithm ends if the termination condition is satisfied; if not, return to step 2.

Here's a simplified Python-like pseudocode:

def genetic_algorithm(population_size, chromosome_length, generations):

 # Step 1: Initialization

 population = initialize_population(population_size, chromosome_length)

 for generation in range(generations):

 # Step 2: Evaluation

 fitness_values = evaluate_population(population)

 # Step 3: Selection

 mating_pool = select_mating_pool(population, fitness_values)

 # Step 4: Crossover

 offspring = crossover(mating_pool)

 # Step 5: Mutation

 mutate(offspring)

 # Step 6: Replacement

 population = replace_population(population, offspring)

 # Step 7: Termination

 if termination_condition_met():

 break

 return best_solution(population, fitness_values)

Advantage of the Genetic Algorithms in cloud computing:

In cloud computing, where resource allocation, scheduling, and optimization are crucial,

Genetic Algorithms (GAs) have a number of benefits. The following are some benefits of

cloud computing using genetic algorithms are mention in Figure 1:

a) Optimization of Resource Allocation:

In cloud systems, resource allocation may be optimized by the use of genetic algorithms. To

optimize overall performance, this entails spreading computing resources like storage,

network bandwidth, and virtual machines in an effective manner[6].

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Illustrated the advantage of

b) Adaptability to Dynamic Environments:

Workloads and resource needs in cloud computing settings are often changing and dynamic.

Because genetic algorithms may adjust over time, they are a good fit for issues invol

dynamic optimization. They provide the ongoing modification of resource distributions in

response to current needs.

c) Parallel Processing and Scalability:

The genetic algorithms are designed to facilitate parallel processing, they may be used to

large-scale cloud computing optimization challenges. They may use the scalability of cloud

infrastructures by being parallelized to work on many solutions at once.

d) Task Scheduling and Load Balancing:

In cloud settings, work scheduling may be optimized via

System performance is improved overall, resource usage is minimized, and load balancing

and scheduling are done efficiently.

e) Global Search Capability:

Genetic algorithms are useful for finding nearly

global search across the solution space. Geographically anchored algorithms (GAs) may

The Performance of the Different Algorithms on Cloud Computing Environment

Figure 1: Illustrated the advantage of the genetic algorithms in cloud computing.

Adaptability to Dynamic Environments:

Workloads and resource needs in cloud computing settings are often changing and dynamic.

Because genetic algorithms may adjust over time, they are a good fit for issues invol

dynamic optimization. They provide the ongoing modification of resource distributions in

Parallel Processing and Scalability:

The genetic algorithms are designed to facilitate parallel processing, they may be used to

scale cloud computing optimization challenges. They may use the scalability of cloud

infrastructures by being parallelized to work on many solutions at once.

Task Scheduling and Load Balancing:

In cloud settings, work scheduling may be optimized via the use of genetic algorithms.

System performance is improved overall, resource usage is minimized, and load balancing

and scheduling are done efficiently.

Global Search Capability:

Genetic algorithms are useful for finding nearly-optimal solutions because they conduct a

global search across the solution space. Geographically anchored algorithms (GAs) may

85

The Performance of the Different Algorithms on Cloud Computing Environment

the genetic algorithms in cloud computing.

Workloads and resource needs in cloud computing settings are often changing and dynamic.

Because genetic algorithms may adjust over time, they are a good fit for issues involving

dynamic optimization. They provide the ongoing modification of resource distributions in

The genetic algorithms are designed to facilitate parallel processing, they may be used to

scale cloud computing optimization challenges. They may use the scalability of cloud

the use of genetic algorithms.

System performance is improved overall, resource usage is minimized, and load balancing

optimal solutions because they conduct a

global search across the solution space. Geographically anchored algorithms (GAs) may

86

The Performance of the Different Algorithms on Cloud Computing Environment

 investigate a wide range of solutions and prevent local optima in cloud computing, where the

search space for resource allocation and job scheduling is large[7].

f) Self-Adaptive Systems:

Cloud-based self-adaptive systems may be coupled with genetic algorithms. These systems

don't need continual human involvement since they can independently modify their settings

in response to changing circumstances, guaranteeing optimum resource use and performance.

g) Fault Tolerance and Robustness:

Failures or variations in resource availability are possible in cloud settings. Because genetic

algorithms are population-based, they provide resilience to errors. The population's variety

makes it possible to investigate several options in the event of unforeseen circumstances.

h) Energy Efficiency:

Cloud data centers may achieve higher energy efficiency by using genetic algorithms to

optimize resource allocation and activity scheduling. Green computing projects may benefit

from the reduction of wasteful energy use that can be achieved via more intelligent resource

allocation.

i) Customization for Specific Objectives:

Genetic algorithms may be tailored to a great extent. They are adaptable to the particular

goals and limitations of a cloud computing environment. This adaptability makes it possible

to include requirements and domain-specific information in the optimization process.

j) Reduced Human Intervention:

Genetic algorithms reduce the requirement for human resource management involvement by

automating the search and optimization process. In large-scale cloud setups, where manual

optimization may be laborious and prone to errors, this is especially advantageous. Genetic

Algorithms provide a flexible and efficient method for resolving cloud computing

optimization issues, enhancing resource efficiency, flexibility, and overall system

performance[8].

Future Directions of the Genetic Algorithms in cloud computing:

Genetic Algorithms (GAs) have shown to be effective optimization methods, using natural

selection as inspiration to develop solutions for challenging issues. GAs have proven

effective in the context of cloud computing, where load balancing, job scheduling, and

resource allocation are important issues. When considering the future, the following are some

encouraging avenues for the development of genetic algorithms in the context of cloud

computing:

a) Dynamic Resource Management:

In order to effectively manage resources in real-time, genetic algorithms must be adapted to

more dynamic and varied cloud settings. Subsequent investigations might concentrate on

creating GAs that can adapt their resource allocations in real time to changing workloads,

thereby enhancing both efficiency and affordability.

b) Multi-Objective Optimization:

Several goals, including decreasing latency, increasing resource usage, and lowering energy

use, are optimized in cloud computing. It is probable that in the future, Genetic Algorithms

87

The Performance of the Different Algorithms on Cloud Computing Environment

 will develop into multi-objective optimization frameworks that will reconcile these opposing

objectives and provide Pareto-optimal solutions that meet a range of user needs.

c) Security and Privacy Considerations:

Genetic Algorithms may be improved to solve security and privacy problems, which are

becoming more and more important in cloud computing. To make sure that developed

solutions follow strict security and privacy standards, this may include integrating privacy-

preserving mechanisms and security-aware fitness functions.

d) Edge and Fog Computing Integration:

Genetic Algorithms may be expanded to optimize resource allocation at the network edge as

well as in centralized cloud data centers, as edge and fog computing become more popular.

By enabling more effective data processing nearer to the source, this integration would lower

latency and improve system performance as a whole.

e) Hybrid Algorithms and Ensemble Approaches:

It's possible that hybrid algorithms and ensemble techniques may get more attention in the

future of genetic algorithms in cloud computing. GAs may provide more resilient and

adaptable solutions when combined with other optimization strategies or machine learning

algorithms, improving performance in a wider variety of cloud computing applications[9].

f) Exploitability and Transparency:

There is an increasing need for the exploitability and openness of decision-making processes

in cloud-based systems. Subsequent Genetic Algorithms might include processes that provide

a knowledge of the logic behind the developed solutions, promoting mutual respect and

comprehension between administrators and users.

g) Quantum Computing Integration:

Researchers may investigate the integration of Genetic Algorithms with quantum computing

concepts in light of the advent of quantum computing. This may result in the creation of

genetic algorithms with quantum inspiration, opening the door to new possibilities in terms of

computing efficiency and problem-solving power.

h) Scalability and Parallelism:

Scalability is still a major issue in cloud computing. In order to handle bigger problem areas

and fully use dispersed cloud infrastructures, future genetic algorithms are probably going to

concentrate on improving scalability and parallelism.

To sum up, genetic algorithms have a bright future ahead of them in cloud computing, where

they may help with developing issues like security, multi-objective optimization, dynamic

settings, and integrating new technology. It is anticipated that scholars and industry

professionals will work together across disciplines to fully realize the potential of genetic

algorithms in influencing the direction of cloud computing.

DISCUSSION

The use of Genetic Algorithms (GAs) in cloud computing has surfaced as a persuasive and

inventive method for handling intricate optimization issues. Genetic algorithms look for the

best answers within a large solution space using the concepts of evolution, drawing

inspiration from the process of natural selection. These algorithms provide a potential

88

The Performance of the Different Algorithms on Cloud Computing Environment

 approach to load balancing, job scheduling, and resource allocation in cloud computing. The

efficacy of conventional optimization techniques is diminished in cloud systems due to their

dynamic and unpredictable character, which has prompted the investigation of adaptive and

evolutionary methods like genetic algorithms[10].

The capacity of Genetic Algorithms to manage a variety of dynamic workloads is a major

benefit when using them in cloud computing. Demand variations are common for cloud

systems, and GAs may adjust and optimize resource allocation to suit shifting circumstances.

This flexibility improves cloud services' overall effectiveness and performance by making

sure that processing resources are used as efficiently as possible to satisfy user needs.

Furthermore, Genetic Algorithms' parallel nature complements cloud platforms' distributed

design, allowing them to grow effectively in response to rising computing needs. However,

there are additional difficulties and things to take into account when integrating genetic

algorithms with cloud computing. Careful consideration must be given to issues with the

algorithm's scalability, the choice of suitable genetic operators, and the need for efficient

communication channels between dispersed components. Concerns about security and

privacy must also be taken into consideration, particularly when handling sensitive data in a

shared cloud environment. To fully realize the potential of Genetic Algorithms in cloud

computing and guarantee their usefulness in real-world situations, it is essential to strike a

balance between their advantages and disadvantages. The use of genetic algorithms to cloud

computing is expanding the possibilities for improving resource management and cloud

system performance[11]. The combination of cloud computing with evolutionary

computation is expected to provide novel answers to challenging optimization issues as

technology develops, offering a stable foundation for the ever-evolving and dynamic cloud

service market.

CONCLUSION

In summary, a viable avenue for tackling the intricate and dynamic problems associated with

load balancing, job scheduling, and resource allocation is the incorporation of Genetic

Algorithms (GAs) into cloud computing. Because of their evolutionary origins, GAs can

traverse the complex solution space of cloud settings in an adaptable manner, providing a

scalable and effective solution to satisfy the constantly evolving needs of contemporary

computing. Notwithstanding the obvious advantages, it is critical to recognize and deal with

issues including scalability, choosing the right genetic operators, and security problems. The

combination of cloud computing and genetic algorithms works well together, demonstrating

the creative solutions that can be achieved when distributed systems and evolutionary

computation are combined. This is especially true as cloud technology advances. GAs'

dynamic resource optimization capability fits very well with cloud platforms' scalability and

flexibility. In the future, research and development endeavors need to concentrate on

optimizing the use of Genetic Algorithms in cloud computing, tackling pragmatic obstacles,

and guaranteeing that privacy and security concerns are sufficiently taken into account. In the

end, cloud computing genetic algorithms have the power to completely change how we solve

optimization issues in a cloud setting. This nexus between evolutionary computing and cloud

technology has the potential to greatly improve the effectiveness, flexibility, and overall

performance of cloud-based services in the quickly changing information technology

environment via further study and real-world implementations.

REFERENCES:

[1] J. Ding and S. Yang, “Classification Rules Mining Model with Genetic Algorithm in

Cloud Computing,” Int. J. Comput. Appl., 2012, doi: 10.5120/7449-0457.

89

The Performance of the Different Algorithms on Cloud Computing Environment

 [2] R. Nagar, D. K. Gupta, and R. M. Singh, “Time Effective Workflow Scheduling using

Genetic Algorithm in Cloud Computing,” Int. J. Inf. Technol. Comput. Sci., 2018, doi:

10.5815/ijitcs.2018.01.08.

[3] Q. Xu, Z. Xu, and T. Wang, “A Data-Placement Strategy Based on Genetic Algorithm

in Cloud Computing,” Int. J. Intell. Sci., 2015, doi: 10.4236/ijis.2015.53013.

[4] T. Goyal and A. Agrawal, “Host Scheduling Algorithm Using Genetic Algorithm in

Cloud Computing Environment,” Int. J. Res. Eng. Technol., 2013.

[5] M. Sardaraz and M. Tahir, “A parallel multi-objective genetic algorithm for scheduling

scientific workflows in cloud computing,” Int. J. Distrib. Sens. Networks, 2020, doi:

10.1177/1550147720949142.

[6] L. Deng, Y. Li, L. Yao, Y. Jin, and J. Gu, “Power-Aware Resource Reconfiguration

Using Genetic Algorithm in Cloud Computing,” Mob. Inf. Syst., 2016, doi:

10.1155/2016/4859862.

[7] Z. Xu, X. Xu, and X. Zhao, “Task scheduling based on multi-objective genetic

algorithm in cloud computing,” J. Inf. Comput. Sci., 2015, doi:

10.12733/jics20105468.

[8] Kalpana and M. Shanbhog, “Load balancing in cloud computing with enhanced

genetic algorithm,” Int. J. Recent Technol. Eng., 2019, doi:

10.35940/ijrte.B1176.0782S619.

[9] G. Wei, “Task scheduling algorithm based on bidirectional optimization genetic

algorithm in cloud computing environment,” Agro Food Ind. Hi. Tech., 2017.

[10] D. Chaudhary and B. Kumar, “Cost optimized Hybrid Genetic-Gravitational Search

Algorithm for load scheduling in Cloud Computing,” Appl. Soft Comput. J., 2019, doi:

10.1016/j.asoc.2019.105627.

[11] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam, “A Genetic Algorithm

(GA) based Load Balancing Strategy for Cloud Computing,” Procedia Technol., 2013,

doi: 10.1016/j.protcy.2013.12.369.

90

The Performance of the Different Algorithms on Cloud Computing Environment

 CHAPTER 11

ADVANCEMENTS IN FAULT TOLERANCE ALGORITHMS AND

ANALYSIS OF STRATEGIES AND FUTURE DIRECTIONS
Pooja Dubey , Assistant Professor,

Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar

Pradesh, India.

Email Id- pooja.shukla@muit.in

ABSTRACT:

This study provides an extensive study of tactics used in various computing environments,

along with a detailed evaluation of current developments in fault tolerance algorithms.

Reliable fault tolerance techniques are becoming more and more crucial as technological

systems continue to grow in complexity and size. The study examines many fault tolerance

methods, such as adaptive fault tolerance, error detection and correction systems, and

redundancy-based solutions. It also offers insights into the difficulties encountered by current

algorithms and suggests possible directions for further study and advancement. Compiling the

most recent developments, assessing algorithmic performance, and pinpointing areas for

further study lead to a comprehensive picture of how fault tolerance is changing in computer

systems. This study attempts to be an important tool for scholars, professionals, and decision-

makers who are attempting to traverse the complex field of fault tolerance, encouraging

creativity and adaptability in the face of system failures.

KEYWORDS:

Adaptive Fault Tolerance, Cloud Computing, Fault Tolerance Algorithms, Machine

Learning, Predictive Analytics.

INTRODUCTION

Cloud computing has become a disruptive paradigm in the age of fast technological

innovation, changing the way computer resources are supplied, accessed, and used. Strong

and dependable systems are now more important than ever as businesses move more and

more of their vital apps and data to cloud environments. Nonetheless, the intrinsic intricacy

and enormity of cloud infrastructures provide novel obstacles, namely the vulnerability to

malfunctions and breakdowns. Unexpected hardware failures, network outages, and software

mistakes may compromise the dependability and integrity of cloud-hosted services. Fault

tolerance algorithms have emerged as a key area of focus for cloud computing research and

development in response to this pressing issue. These algorithms are essential for minimizing

the effects of errors, guaranteeing continuous service provision, and protecting data integrity.

Because cloud settings are dispersed and dynamic, fault tolerance requires creative solutions

that go beyond conventional thinking and use flexible tactics that can adapt to changing

conditions[1].

This thorough analysis explores how fault tolerance algorithms are developing in relation to

cloud computing. Through an analysis of state-of-the-art techniques and approaches, we want

to provide a sophisticated insight into the methods used to improve cloud-based systems'

resilience. Every aspect of fault tolerance, from adaptive fault tolerance schemes to

redundancy-based approaches and error detection systems, is examined for suitability and

effectiveness in the complex cloud environment. In addition, this paper delineates and

investigates the distinct obstacles that fault tolerance in cloud systems presents, including

dynamic resource allocation, fluctuating workloads, and the complexities associated with

multi-tenancy. Researchers, practitioners, and cloud service providers may get useful insights

91

The Performance of the Different Algorithms on Cloud Computing Environment

 from a critical examination of current fault tolerance algorithms, which aims to uncover their

strengths, limits, and possible areas for development.Understanding and developing fault

tolerance techniques becomes essential for guaranteeing the dependability and availability of

services as the cloud computing ecosystem continues to change[2]. The goal of this study is

to provide a thorough guide for understanding the intricate relationship between cloud

computing and fault tolerance algorithms, encouraging creativity and adaptability in the face

of a rapidly evolving technological environment.

History of the fault tolerance in cloud computing:

The development of techniques and technologies intended to guarantee the dependability and

accessibility of services in dynamic and dispersed contexts is reflected in the history of fault

tolerance in cloud computing. The emergence of cloud computing ushered in a new era of

computer resource management and accessibility, but it also brought with it new risks

associated with system outages and interruptions. Below is a quick summary of how cloud

computing fault tolerance has evolved over time:

Early Cloud Era (2000s):

The introduction of services like Amazon Web Services (AWS) and Google Cloud Platform

in the early 2000s marked the beginning of the cloud computing era. During this time, the

main methods used by fault tolerance to handle hardware failures and maintain service

continuity were classic approaches like redundancy and failover systems[3].

Introduction of Virtualization (Mid-2000s):

Virtualization technologies were widely used in the mid-2000s, enabling the operation of

many virtual machines (VMs) on a single physical server. By reducing downtime, increasing

resource efficiency, and facilitating quick migration of virtual machines (VMs) to healthy

hosts in the event of a hardware breakdown, virtualization improved fault tolerance.

Distributed Systems and Data Replication (Late 2000s):

As cloud infrastructures grew, distributed systems ideas were incorporated into fault

tolerance solutions. Methods for improving data availability and durability, such data

replication across many geographically separated data centers, gained popularity.

Advancements in Cloud Platforms (2010s):

Cloud service companies added sophisticated fault tolerance capabilities to their systems

throughout the 2010s. To handle fluctuating workloads and maximize resource usage while

preserving service uptime, load balancing techniques, auto-scaling capabilities, and dynamic

resource allocation were combined.

Containerization and Orchestration (Mid-2010s):

The emergence of technologies for containerization, like Docker, opened up new possibilities

for fault tolerance. The emergence of container orchestration technologies, such as

Kubernetes, improved fault tolerance in cloud-native applications by offering automated

deployment, scaling, and self-healing capabilities[4].

Machine Learning and Predictive Analytics

Machine learning and predictive analytics have been used in fault tolerance in more recent

times. With the use of these technologies, possible problems may be proactively identified,

enabling preventative actions to lessen defects before they affect service availability.

92

The Performance of the Different Algorithms on Cloud Computing Environment

 Current Trends and Future Directions

Research and development on fault tolerance are still priorities in the modern day.

Techniques for dealing with issues like serverless computing, microservices, and edge

computingwhich are specific to cloud-native architecturesare being improved. The potential

contributions of emerging technologies such as decentralized computing and blockchain to

fault tolerance in cloud systems are also being investigated.

The history of fault tolerance in cloud computing is a path of continuous innovation and

adaptation to meet the needs of an ever-changing and complex digital ecosystem. The future

of fault tolerance in cloud computing is expected to be shaped by the combination of

sophisticated algorithms, automation, and intelligent monitoring[5].

Algorithm of the fault tolerance in Cloud Computing:

Numerous methods and techniques are used in cloud computing to identify, isolate, and

recover from faults or system failures in order to achieve fault tolerance. The following are

some important algorithmic strategies for cloud computing fault tolerance:

A. Redundancy-based Approaches:

a) Replication:

Several copies of crucial parts or data are made using this approach and stored on several

nodes or data centers. Traffic may be diverted to the redundant copies in the event of a failure

to preserve service availability.

b) Triple Modular Redundancy (TMR):

TMR calls for triplicating the software or hardware parts. The majority of the duplicated

components determines the proper output in a majority voting process that powers the

system.

B. Error Detection and Correction Algorithms:

a) Checksums and Hashing:

These methods are used to the detection of data transmission problems. In the event that a

mistake is found, error-correcting codes may be used to either retransmit or rectify the data.

b) Hamming Code:

This function adds extraneous information to the data in order to identify and fix mistakes. It

is often used in memory systems as a bit flip protection mechanism.

C. Adaptive Fault Tolerance Algorithms:

a) Dynamic Resource Allocation:

Algorithms for distributing resources in a dynamic manner according to system parameters

and workload. This may include adjusting the resources in order to satisfy demand while

maintaining fault tolerance.

b) Self-healing Mechanisms:

Autonomous systems having the ability to identify errors and implement fixes without human

assistance. Consider auto-scaling, which automatically provisions more instances in the event

of a rise in load or a failure.

93

The Performance of the Different Algorithms on Cloud Computing Environment

 D. Consensus Algorithms:

a) Paxos and Raft:

The purpose of these consensus algorithms is to guarantee agreement amongst a dispersed

group of nodes. Because they allow nodes to come to an agreement on a value even in the

event that some nodes fail or send contradicting messages, they are essential to fault-tolerant

distributed systems.

E. Checkpointing and Rollback Recovery:

a) Checkpointing:

The status of the system is periodically captured in snapshots. To minimize data loss in the

event of a failure, the system may be rolled back to a prior consistent state.

b) Rollback Recovery:

The system has the ability to resume transactions from a prior checkpoint and roll back to it

when a fault is identified.

F. Quorum-based Systems:

a) Quorum Consensus:

A quorum is a subset of nodes in distributed systems that need to concur on an action before

it can be carried out. In the event of a node loss, quorum-based systems provide fault

tolerance by guaranteeing that the majority of nodes concur on decisions.

G. Predictive Analytics and Machine Learning:

a) Anomaly Detection:

Algorithms for machine learning may be used to find anomalies or departures from typical

system behavior. Proactive fault mitigation is made possible by predictive analytics, which

uses previous data to forecast future errors.

It may be difficult to create general pseudo code for a fault tolerance method since the details

of the algorithm rely on the system's features, the sort of fault tolerance needed, and the

context. I can, however, provide a straightforward illustration of a general fault tolerance

method that makes use of a fundamental redundancy strategy[6]. This pseudocode operates

under the assumption that several redundant components are operating and that the right

output is chosen via a voting process.

function mainAlgorithm(input):

 try:

 result1 = component1.execute(input)

 result2 = component2.execute(input)

 result3 = component3.execute(input)

 // Check if results match

 if result1 == result2 and result2 == result3:

 return result1 // All components agree, return the result

94

The Performance of the Different Algorithms on Cloud Computing Environment

 else:

 // Perform error recovery, e.g., by re-executing the operation or using a fallback

mechanism

 handleFault()

 catch FaultException:

 // Handle specific fault exceptions, log, and initiate recovery

 handleFault()

function handleFault():

 // Perform fault recovery actions, such as using an alternative component, rolling back to a

checkpoint, or notifying system administrators.

 // The specific actions will depend on the fault tolerance strategy.

// Example usage:

inputData = getInputData()

result = mainAlgorithm(inputData)

// Use the result in the application

Advantages of the Fault Tolerance in cloud computing:

In cloud computing, fault tolerance is the system's capacity to go on operating normally even

in the event of hardware or software problems.

The performance, availability, and dependability of cloud-hosted apps and services depend

heavily on this feature. The following are some major benefits of fault tolerance in cloud

computing:

a) High Availability:

By smoothly rerouting traffic or workload to healthy resources in the event of a malfunction,

fault tolerance reduces downtime. This lessens the effect of any interruptions on customers

and business operations by guaranteeing that essential apps and services continue to be

available.

b) Reliability:

Fault-tolerant systems improve overall dependability by spreading resources over many

servers, data centers, or geographical locations.

By reducing the possibility of a single point of failure, this redundancy enhances the system's

resilience to software or hardware problems without sacrificing service availability[7].

c) Improved Performance:

In order to ensure that workloads are dispersed across available resources in an effective

manner, fault-tolerant designs often include resource optimization and load balancing. This

contributes to a more responsive and stable environment by improving system performance

and preventing individual component overload.

95

The Performance of the Different Algorithms on Cloud Computing Environment

 d) Data Integrity:

Systems that are fault-tolerant often include backup and data replication capabilities. In the

case of a failure, redundant copies of the data may be swiftly retrieved, avoiding data loss and

guaranteeing the integrity of important information.

e) Cost Savings:

Although adding fault tolerance requires more infrastructure and resources, the potential cost

benefits from less downtime and enhanced system performance may exceed these upfront

costs. Companies gain from lower losses from system breakdowns and continuous

operations.

f) Scalability:

When demand rises, fault-tolerant systems are often built to grow horizontally by adding

additional resources. In addition to improving fault tolerance, this scalability helps enterprises

better react to changing needs by handling increasing workloads.

g) Customer Satisfaction:

Reliability and high availability are factors that enhance the user experience. When services

are regularly available and function properly, customers are more inclined to trust them and

keep using them, which increases customer satisfaction and loyalty[8].

h) Compliance and Security:

Enhancing security and fulfilling regulatory compliance requirements are two ways that fault

tolerance might help. Redundancy and backup systems support data security and privacy

while assisting businesses in adhering to industry norms and laws.

Increased availability, dependability, performance, data integrity, cost savings, scalability,

customer happiness, and support for security and compliance requirements are just a few

benefits of fault tolerance in cloud computing. Fault tolerance is an essential component of

building reliable and robust cloud-based systems because of these advantages.

DISCUSSION

With the growing dependence on sophisticated and linked technologies in today's computer

systems, fault tolerance algorithm advancements have become more important. The

likelihood of system malfunctions and interruptions increases as our digital infrastructure

becomes larger and more complex. To maintain the resilience and dependability of systems,

researchers and engineers have been working nonstop to improve fault tolerance algorithms

in response to these problems. This entails exploring the study of fault tolerance tactics in

addition to creating more advanced mistake detection and repair systems[9].The use of

machine learning methods into fault tolerance algorithms is one noteworthy area of progress.

By using artificial intelligence, systems may anticipate probable malfunctions by analyzing

past data, which facilitates the taking of preventive action before to a catastrophic event.

Furthermore, since machine learning algorithms are flexible and self-learning, they can

constantly adapt to new threats and weaknesses, which adds to the dynamic nature of fault

tolerance.The examination of fault tolerance solutions is a crucial facet of this dynamic

environment. While error correcting codes and redundancy were common features of

traditional techniques, more sophisticated approaches that take into account the unique

properties of the systems under consideration are being investigated by modern methods.

96

The Performance of the Different Algorithms on Cloud Computing Environment

 This calls for a comprehensive comprehension of the application requirements, the system

architecture, and the types of possible errors. In order to improve the trade-off between

resilience and resource efficiency, researchers customize fault tolerance algorithms to each

system's specific characteristics.In terms of the future, fault tolerance algorithms seem to be

progressing in a direction that will eventually lead to more all-encompassing and contextually

aware solutions. The fault tolerance environment becomes even more complicated with the

integration of edge computing, cloud computing, and the Internet of Things (IoT). This calls

for adaptive techniques that can handle the intricacies of dispersed and heterogeneous

systems[10], [11]. In addition, as quantum computing capabilities progress, interest in the

study of quantum fault tolerance is growing.The ongoing development of fault tolerance

algorithms is essential to guaranteeing the dependability and resilience of contemporary

computer systems. The dynamic aspect of this discipline is highlighted by the use of machine

learning, sophisticated methods, and consideration of upcoming technology. Researchers,

business leaders, and legislators working together will be crucial in guiding fault tolerance

developments in the direction of a more secure and resilient digital future.

CONCLUSION

To sum up, the continuous development of fault tolerance algorithms and the thorough

examination of tactics have been essential in strengthening the dependability and robustness

of contemporary computer systems. This area is dynamic, as seen by the shift from

conventional redundancy approaches to the inclusion of advanced machine learning

techniques. Context-aware and adaptive fault tolerance solutions are becoming more

prevalent, recognizing the complex and varied nature of modern systems and taking into

account things like application needs, system design, and new technologies. Looking

forward, it seems that fault tolerance research is headed toward even more significant

advancements. The convergence of edge computing, IoT, and cloud computing necessitates

creative solutions that can handle the challenges of dispersed, diverse settings. Fault tolerance

research in quantum computing adds another level of complexity, necessitating specific

approaches to deal with the particular problems that these technologies provide. It will be

essential for scholars, industry experts, and politicians to work together to determine the

direction of future developments. Through this partnership, fault tolerance algorithms will be

able to predict and proactively solve new difficulties, as well as keep up with the rapid

advancement of technology. In the end, the search for reliable fault tolerance solutions lays

the foundations for a resilient technological environment in the years to come by substantially

contributing to the establishment of a safe and trustworthy digital infrastructure.

REFERENCES:

[1] S. Luo, L. Cheng, and B. Ren, “Practical swarm optimization based fault-tolerance

algorithm for the internet of things,” KSII Trans. Internet Inf. Syst., 2014, doi:

10.3837/tiis.2014.04.001.

[2] W. Cai, W. Jiang, K. Xie, Y. Zhu, Y. Liu, and T. Shen, “Dynamic reputation–based

consensus mechanism: Real-time transactions for energy blockchain,” Int. J. Distrib.

Sens. Networks, 2020, doi: 10.1177/1550147720907335.

[3] R. Wang, L. Zhang, H. Zhou, and Q. Xu, “A Byzantine Fault Tolerance Raft

Algorithm Combines with BLS Signature,” Yingyong Kexue Xuebao/Journal Appl.

Sci., 2020, doi: 10.3969/j.issn.0255-8297.2020.01.007.

[4] S. Gao, T. Yu, J. Zhu, and W. Cai, “T-PBFT: An EigenTrust-based practical Byzantine

fault tolerance consensus algorithm,” China Commun., 2019, doi:

10.23919/JCC.2019.12.008.

97

The Performance of the Different Algorithms on Cloud Computing Environment

 [5] Z. Bao, K. Wang, and W. Zhang, “A Practical Byzantine Fault Tolerance Consensus

Algorithm Based on Tree Topological Network,” Yingyong Kexue Xuebao/Journal

Appl. Sci., 2020, doi: 10.3969/j.issn.0255-8297.2020.01.003.

[6] J. Ren and Q. Zhang, “Two-stage robust optimal scheduling of virtual power plant

based on energy blockchain,” Dianli Zidonghua Shebei/Electric Power Autom. Equip.,

2020, doi: 10.16081/j.epae.202009004.

[7] M. Du, Q. Chen, and X. Ma, “MBFT: A New Consensus Algorithm for Consortium

Blockchain,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.2993759.

[8] S. Baskar and V. R. S. Dhulipala, “M-CRAFT-modified multiplier algorithm to reduce

overhead in Fault Tolerance algorithm in Wireless Sensor Networks,” J. Comput.

Theor. Nanosci., 2018, doi: 10.1166/jctn.2018.7249.

[9] T. A. Henzinger et al., “Tangaroa: a Byzantine Fault Tolerant Raft,” OSDI {’}99 Proc.

third Symp. Oper. Syst. Des. Implement., 2014.

[10] L. Parra et al., “Design of a WSN for smart irrigation in citrus plots with fault-

tolerance and energy-saving algorithms,” Netw. Protoc. Algorithms, 2018, doi:

10.5296/npa.v10i2.13205.

[11] S. Kim, S. Lee, C. Jeong, and S. Cho, “Byzantine fault tolerance based multi-block

consensus Algorithm for throughput scalability,” in 2020 International Conference on

Electronics, Information, and Communication, ICEIC 2020, 2020. doi:

10.1109/ICEIC49074.2020.9051279.

98

The Performance of the Different Algorithms on Cloud Computing Environment

 CHAPTER 12

ADVANCEMENTS IN THRESHOLD-BASED

PROVISIONING SCHEDULING STRATEGIES FOR ENHANCED

PERFORMANCE IN CLOUD COMPUTING ENVIRONMENTS
Swati Singh, Assistant Professor,

Maharishi School of Engineering & Technology, Maharishi University of Information Technology, Uttar

Pradesh, India.

Email Id- swati.singh@muit.in

ABSTRACT:

Cloud computing, which provides scalable resources and services on-demand, has emerged

as a paradigm-shifting technology. In cloud systems, performance and resource utilization are

greatly enhanced by effective resource scheduling and provisioning. Recent developments in

threshold-based provisioning scheduling algorithms are examined in this review article with

an emphasis on how they might improve cloud computing environment performance. The

study offers a thorough examination of many threshold-based strategies, such as static and

dynamic thresholds, and how well they work with various cloud computing models.

Reviewing aspects including workload fluctuation, resource heterogeneity, and QoS

requirements, it explores the potential and difficulties of threshold-based provisioning. The

research also looks at how predictive analytics and machine learning approaches might be

used to fine-tune threshold values in order to accommodate changing workloads. The paper

also covers experimental assessments and case studies that demonstrate the efficacy of

threshold-based provisioning scheduling algorithms in practical cloud environments. It

discusses the trade-offs between energy consumption, performance optimization, and cost

effectiveness and provides insights into striking a balance that satisfies the various needs of

cloud service users.

KEYWORDS:

Cloud Computing, Resource Provisioning Algorithms, Scalability. Workload Changes.

INTRODUCTION

A new age of digital transformation has begun in recent years with the widespread use of

cloud computing, drastically changing the information technology environment. With more

and more businesses moving their services and apps to the cloud, proper resource scheduling

and provisioning has become a crucial factor in determining system performance and overall

cost-effectiveness. Of all the many tactics developed to streamline these procedures,

threshold-based provisioning scheduling has drawn a lot of interest due to its potential to

improve cloud computing environments' performance. This paper explores the complex field

of developments in threshold-based provisioning scheduling techniques with the goal of

offering a thorough grasp of how these strategies are changing within the dynamic cloud

computing environment.Setting up predetermined thresholds for important performance

indicators, such workload variations, response times, and resource usage, is the idea behind

threshold-based provisioning[1]. Cloud service providers may dynamically assign resources

in response to changing workloads by carefully defining these thresholds, guaranteeing

optimum performance and effective resource use. The range of threshold-based methodsstatic

and dynamic threshold configurations—is examined in this paper along with their suitability

for use in various cloud computing models, such as Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a Service (SaaS).

99

The Performance of the Different Algorithms on Cloud Computing Environment

 It is becoming more and more important to comprehend the nuances of threshold-based

provisioning scheduling in cloud settings due to the rising variety of workloads and resource

needs. The paper looks at the potential and problems with these approaches, including things

like resource heterogeneity, workload fluctuation, and Quality of Service (QoS)

requirements. Furthermore, the incorporation of machine learning and predictive analytics

methods to enhance threshold parameters for accommodating fluctuating workloads is

investigated, emphasizing the developing convergence of conventional provisioning

approaches with state-of-the-art technology[2].This study attempts to clarify the practical

consequences of threshold-based provisioning scheduling in real-world cloud computing

settings by thoroughly analyzing case studies and experimental assessments. Insightful

guidance on navigating the complex decision space of cloud resource management is

provided for academics, practitioners, and decision-makers by the discussion of the trade-offs

between energy consumption, cost effectiveness, and performance optimization. The

combination of empirical data and theoretical frameworks provided in this paper is a useful

and timely tool for keeping up with the most recent developments in threshold-based

provisioning scheduling, which will further the ongoing discussion about cloud computing

environment optimization[3].

History or the Threshold-Based Provisioning Scheduling:

The origins of threshold-based provisioning scheduling may be found in the growing

difficulties associated with resource management and dynamic workloads in cloud computing

settings. During the early phases of cloud adoption, underutilization of resources and subpar

performance were caused by conventional provisioning models' inability to adjust to the

changing demands on resources. Threshold-based provisioning scheduling emerged as a

response to the demand for a more flexible and responsive method.There have been two

major stages in the development of threshold-based provisioning throughout history. At first,

predetermined thresholds were chosen based on expected workload patterns and resource

needs in static threshold settings. Although it offered a starting point for allocating resources,

this strategy lacked the adaptability required to deal with quickly changing circumstances[4].

During the second phase, provisioning scheduling techniques based on dynamic thresholds

came into existence. The understanding that workloads in cloud settings behave dynamically

and unpredictable was what spurred this progress. Cloud service providers were able to more

effectively distribute resources, reacting to variations in demand and guaranteeing optimum

system performance, thanks to dynamic thresholds, which were often modified in real-time

based on observed performance indicators.The use of cutting-edge technology, such

predictive analytics and machine learning, has improved threshold-based provisioning

scheduling over time. These innovations improved the capacity of cloud environments to

react to changing circumstances by enabling more precise forecasts of future workloads and

automated threshold parameter adjustments.The history of threshold-based provisioning

scheduling illustrates the continuous effort in the rapidly changing cloud computing

environment to find a balance between resource efficiency, cost-effectiveness, and

performance improvement. Cloud resource management solutions are maturing as a result of

the lessons learnt from the historical development of threshold-based systems, which are still

being used in modern research and actual implementations[5].

Methods of performing Threshold-Based Provisioning Scheduling strategies

The use of Threshold-Based Provisioning Scheduling (TBPS) techniques is imperative in

cloud computing settings to enhance performance and optimize resource consumption. In

order to effectively fulfill application needs, these solutions include the dynamic allocation

The Performance of the Different Algorithms on Cloud Computing Environment

and deallocation of resources based on established criteria. The techniques for implementing

Threshold-Based Provisioning Scheduling for improved performance in cloud computing

settings are mention in Figure 1 and

Figure 1: Illustrated the Methods of performing Threshold

a) Threshold Definition:

Establishing acceptable criteria based on several performance indicators, including CPU,

RAM, and application reaction time,

resources is initiated by these criteria.

b) Monitoring and Measurement:

It is essential to maintain constant observation over the cloud's apps and infrastructure. Real

time data on resource use, applic

monitoring tools. When measurements fall below certain limits, provisioning or scaling is

initiated[6].

The Performance of the Different Algorithms on Cloud Computing Environment

and deallocation of resources based on established criteria. The techniques for implementing

Based Provisioning Scheduling for improved performance in cloud computing

mention in Figure 1 and briefly explained below:

Figure 1: Illustrated the Methods of performing Threshold-Based Provisioning

Scheduling strategies.

Threshold Definition:

Establishing acceptable criteria based on several performance indicators, including CPU,

RAM, and application reaction time, is the first step. The provisioning or deprovisioning of

resources is initiated by these criteria.

Monitoring and Measurement:

It is essential to maintain constant observation over the cloud's apps and infrastructure. Real

time data on resource use, application performance, and user needs are gathered via

monitoring tools. When measurements fall below certain limits, provisioning or scaling is

100

The Performance of the Different Algorithms on Cloud Computing Environment

 and deallocation of resources based on established criteria. The techniques for implementing

Based Provisioning Scheduling for improved performance in cloud computing

Based Provisioning

Establishing acceptable criteria based on several performance indicators, including CPU,

is the first step. The provisioning or deprovisioning of

It is essential to maintain constant observation over the cloud's apps and infrastructure. Real-

ation performance, and user needs are gathered via

monitoring tools. When measurements fall below certain limits, provisioning or scaling is

101

The Performance of the Different Algorithms on Cloud Computing Environment

 c) Automated Scaling Policies:

Automated scaling policy implementation enables quick adaptation to shifting workloads.

Policies need to specify when and how resources should be scaled up or down in response to

metrics that are seen.

Typical practices include scaling down during slow demand or scaling up when CPU usage

reaches a certain level.

d) Machine Learning Integration:

By forecasting future resource needs based on past data trends, machine learning algorithms

may improve TBPS. These forecasts provide preemptive resource supply, averting downtime

or performance deterioration.

e) Dynamic Resource Allocation:

The main goal of TBPS techniques is to allocate resources dynamically, as required. In order

to respond to changes in workload, this entails expanding the number of virtual machines,

modifying CPU and memory allocations, and optimizing network settings[7].

f) Load Balancing:

A crucial component of TBPS is load balancing, which guarantees that resources are

dispersed uniformly across the system. This helps to improve speed and reliability by

preventing certain servers or instances from being overloaded.

g) Elasticity and Scalability:

TBPS techniques need to be compatible with the scalability and elasticity of the cloud.

Optimal performance and cost-effectiveness are guaranteed by the capacity to expand

resources vertically or horizontally in response to demand.

h) Cost Management:

In TBPS, taking the financial effects into account is essential. Minimizing costs without

sacrificing performance should be the goal of effective resource provisioning and

deprovisioning. In order to minimize needless expenses related to over-provisioning, this

entails maximizing resource use.

i) Integration with Cloud APIs:

Effective communication and management over the cloud infrastructure are made possible by

seamless connection with cloud provider APIs. APIs make it possible to dynamically modify

resources, enabling quick reactions to shifting circumstances[7], [8].

j) Continuous Optimization:

Continuous optimization is necessary for TBPS as it is an iterative process. Continual

evaluation and revision of resource allocation algorithms, scaling rules, and threshold values

guarantees flexibility in response to changing workloads and performance standards.

To sum up, in order to achieve improved performance, resource efficiency, and cost-

effectiveness, successful Threshold-Based Provisioning Scheduling solutions in cloud

computing environments include proactive monitoring, automatic scaling, machine learning,

and continual improvement.

102

The Performance of the Different Algorithms on Cloud Computing Environment

 Algorithm of the Threshold-Based Provisioning Scheduling in cloud computing:

A detailed algorithm for Threshold-Based Provisioning Scheduling involves considering

various aspects, including monitoring, decision-making, and resource management. Below is

a simplified algorithm that outlines the key steps involved in the process:

Algorithm: Threshold-Based Provisioning Scheduling

Input:

 Performance metrics (e.g., CPU utilization, memory usage, network bandwidth)

 Threshold values for each metric

 Cloud infrastructure details (e.g., available virtual machines, network configurations)

Output:

 Provisioning or deprovisioning actions

Initialize:

 Set monitoring interval (e.g., 1 minute)

 Set scaling policies and thresholds

Repeat:

1. Monitor performance metrics:

 Collect real-time data on CPU utilization, memory usage, network bandwidth, etc.

2. Evaluate against thresholds:

 Compare the collected metrics with predefined thresholds.

3. Decide scaling actions:

 If any metric breaches its threshold:

 If scaling up conditions are met:

 Provision additional resources (e.g., launch new VM instances)

 If scaling down conditions are met:

 Deprovision excess resources (e.g., terminate underutilized VM instances)

4. Implement scaling actions:

 - Execute the provisioning or deprovisioning actions decided in the previous step.

5. Update scaling policies:

 - Optionally, adjust scaling policies based on historical data or machine learning

predictions.

 6. Sleep for the monitoring interval:

 - Wait for the next iteration.

Until termination condition is met.

103

The Performance of the Different Algorithms on Cloud Computing Environment

 Advantages of the Threshold-Based Provisioning Scheduling Strategies for Enhanced

Performance in Cloud Computing:

In cloud computing, threshold-based provisioning scheduling algorithms have several

benefits that help to improve performance. Here are a few main benefits:

a) Resource Optimization:

Resource allocation and deallocation based on predetermined criteria are made possible by

threshold-based provisioning.

By ensuring that resources are only assigned when necessary, this improves resource usage

and lowers waste.

b) Cost Efficiency:

Through dynamic resource allocation based on workload criteria, enterprises may maximize

their cloud expenditure. Because resources are supplied or de-provisioned depending on

demand, avoidance of needless expenditures during times of low activity aids in cost

management.

c) Improved Scalability:

Threshold-based techniques enable resources to be automatically scaled to accommodate

workload fluctuations.

The system can automatically scale up or down to match performance needs as demand

grows or falls, guaranteeing excellent scalability and responsiveness[3], [9].

d) Enhanced Performance and Responsiveness:

Real-time threshold-based monitoring and modification allow systems to react promptly to

workload variations. This guarantees that apps respond to user requests and aids in sustaining

peak performance levels.

e) Better Quality of Service (QoS):

Predefined service levels may be established via the management and setting of criteria. This

makes sure that by modifying resource allocations to achieve performance requirements, the

system maintains a consistent quality of service.

f) Energy Efficiency:

Through the dynamic adjustment of resources in response to workload criteria, cloud

providers may improve data center energy usage. This lowers operating expenses related to

electricity usage and promotes environmental sustainability.

g) Automated Management:

Resource management may be automated using threshold-based provisioning. By doing this,

the need for human intervention is decreased, improving operational efficiency and freeing

up IT workers to concentrate on more strategic duties.

h) Adaptability to Workload Variability:

Workload fluctuation is a common occurrence in cloud settings. Systems that use threshold-

based techniques are able to adjust to these changes and make sure that resources are

distributed effectively in order to meet variations in demand.

104

The Performance of the Different Algorithms on Cloud Computing Environment

 i) Fault Tolerance:

Threshold-based techniques, which automatically identify abnormalities or deviance from

predicted performance levels, may help improve fault tolerance. The system has the ability to

reallocate workloads or scale up resources in the case of a performance problem.

j) Optimized User Experience:

Threshold-based provisioning enhances user experience overall by improving speed,

responsiveness, and scalability. End customers may get a more dependable and timely service

from cloud-hosted applications[10].

DISCUSSION

Developments in Threshold-Based Provisioning Scheduling Techniques for Improved

Performance in Cloud Computing Environments represents the ever-changing environment of

modern cloud computing and the unwavering quest of performance optimization using

advanced provisioning scheduling techniques. The focus on threshold-based provisioning is a

big step forward in the field of cloud computing, where resource allocation is critical to

overall efficiency. 'Threshold' describes predetermined criteria that, when met in response to

changing workload or demand patterns, cause certain actions to be taken. The developments

in this domain are centered on the creation and improvement of methods that use thresholds

to strategically distribute resources in order to achieve the best possible trade-off between

efficiency and resource use. With the increasing demand for cloud services, effective

resource management is becoming more and more important[11]. Innovative approaches to

improving scheduling mechanisms are being investigated by researchers and practitioners to

make sure that resources are distributed dynamically according to current demand patterns.

This publication summarizes a thorough investigation of these innovative tactics, illuminating

the ways in which threshold-based provisioning might revolutionize the pursuit of increased

performance in cloud computing settings. The discussion of developments in threshold-based

provisioning scheduling techniques spans a wide range of approaches with the goal of

optimizing cloud computing advantages while reducing overhead, from adaptive algorithms

to machine learning-driven decision-making. This conversation is essentially a compass that

points the industry in the direction of a future in which cloud resources are distributed with

never-before-seen efficiency, satisfying the changing requirements of users and apps in a

digital environment that is becoming more and more dynamic[12].

CONCLUSION

To sum up, the fast development of cloud computing environments has led to notable

progress in threshold-based provisioning scheduling algorithms, which are designed to

maximize efficiency and effective use of resources. Innovative strategies that dynamically

assign resources based on predetermined criteria have been developed as a result of research

and development in this sector. This ensures effective use while fulfilling the needs of

various workloads. These tactics address the dynamic nature of programs and the constantly

shifting needs of users, improving cloud computing's scalability, dependability, and cost-

effectiveness. Future efforts will probably concentrate on improving current tactics,

investigating fresh angles, and adjusting to new developments as the technology keeps

developing, with the ultimate goal of cultivating a more resilient and responsive cloud

architecture. The constant quest for perfection in threshold-based provisioning scheduling

techniques highlights the critical role that these methods will play in determining the future

direction of cloud computing and opening the door to environments that are more high-

performing, durable, and adaptable.

105

The Performance of the Different Algorithms on Cloud Computing Environment

 REFERENCES:

[1] A. Tchernykh et al., “Configurable cost-quality optimization of cloud-based VoIP,” J.

Parallel Distrib. Comput., 2019, doi: 10.1016/j.jpdc.2018.07.001.

[2] A. Nithya R, S. A, and V. R, “Adaptive Resource Allocation and Provisioning in

Multi-Service Cloud Environments,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol.,

2019, doi: 10.32628/cseit195253.

[3] M. D. Farzanegan, H. Saidi, and M. Mahdavi, “A scheduling algorithm for controlling

of service rate and burst,” in 2012 18th Annual International Conference on Advanced

Computing and Communications, ADCOM 2012, 2012. doi:

10.1109/ADCOM.2012.6563580.

[4] I. Alawe, Y. Hadjadj-Aoul, A. Ksentini, P. Bertin, C. Viho, and D. Darche, “Smart

Scaling of the 5G Core Network: An RNN-Based Approach,” in Proceedings - IEEE

Global Communications Conference, GLOBECOM, 2018. doi:

10.1109/GLOCOM.2018.8647590.

[5] M. I. Salman, M. Q. Abdulhasan, C. K. Ng, N. K. Noordin, B. M. Ali, and A. Sali, “A

partial feedback reporting scheme for LTE mobile video transmission with QoS

provisioning,” Comput. Networks, 2017, doi: 10.1016/j.comnet.2016.09.004.

[6] A. L. Ruscelli, G. Cecchetti, and P. Castoldi, “Elastic QoS Scheduling with Step-by-

Step Propagation in IEEE 802.11e Networks with Multimedia Traffic,” Wirel.

Commun. Mob. Comput., 2019, doi: 10.1155/2019/2925891.

[7] D. Singh, P. S. Saikrishna, R. Pasumarthy, and D. Krishnamurthy, “Decentralized

LPV-MPC controller with heuristic load balancing for a private cloud hosted

application,” Control Eng. Pract., 2020, doi: 10.1016/j.conengprac.2020.104438.

[8] M. Rahman and P. Graham, “Compatibility-based static VM placement minimizing

interference,” J. Netw. Comput. Appl., 2017, doi: 10.1016/j.jnca.2017.02.004.

[9] K. S. Patel and A. K. Sarje, “VM Provisioning method to improve the profit and sla

violation of cloud service providers,” in IEEE Cloud Computing for Emerging

Markets, CCEM 2012 - Proceedings, 2012. doi: 10.1109/CCEM.2012.6354623.

[10] M. E. Frincu, S. Genaud, and J. Gossa, “Comparing provisioning and scheduling

strategies for workflows on clouds,” in Proceedings - IEEE 27th International Parallel

and Distributed Processing Symposium Workshops and PhD Forum, IPDPSW 2013,

2013. doi: 10.1109/IPDPSW.2013.55.

[11] M. Alrokayan, A. Vahid Dastjerdi, and R. Buyya, “SLA-aware provisioning and

scheduling of cloud resources for big data analytics,” in 2014 IEEE International

Conference on Cloud Computing in Emerging Markets, CCEM 2014, 2015. doi:

10.1109/CCEM.2014.7015497.

[12] K. D.Prajapati, P. Raval, M. Karamta, and M. B. Potdar, “Comparison of Virtual

Machine Scheduling Algorithms in Cloud Computing,” Int. J. Comput. Appl., 2013,

doi: 10.5120/14523-2914.

	COVER
	CONTENTS
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	CHAPTER 8
	CHAPTER 9
	CHAPTER 10
	CHAPTER 11
	CHAPTER 12

